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Abstract

The Gravity Recovery and Climate Experiment (GRACE) has created a more than 15 year

record of time variable gravity and enabled studies of regional terrestrial water storage (TWS)

changes. These and other studies have primarily been limited to analyses of long wavelength signals

due to the inherent 30-day temporal resolution associated with the majority of GRACE products.

This dissertation seeks to improve on this limitation by creating a daily estimate of TWS using mass

concentrations (mascons) as an iteration of the Goddard Space Flight Center’s (GSFC) monthly

global mascon product. The developed solution couples the 30-day high spatial resolution of that

product with lower spatial resolution daily estimates. Key to this study is the development of an

optimized regularization strategy for resolving daily fields that maximizes signal recovery and a

characterization of bias in the solution due to this regularization. A rigorous analysis shows that

the resulting daily estimated mascons have latitudinally-dependent resolution, with approximately

450 km spatial resolution in polar regions and 800-1,200 km spatial resolution at low latitudes. This

analysis shows strong signal recovery relative to bias effects for basins larger than 800,000 km2 and

marginal recovery for basins 300,000-800,000 km2, while signal recovered in basins smaller than

250,000 km2 are dominated by bias errors. The solution developed in this dissertation is the first

daily TWS product with global land coverage estimated from individual daily GRACE Level-1B

observations.
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Chapter 1

Introduction

We live in a dynamic world, driven not just by our day-to-day activities but often more so

by the environment around us. Earth’s climate sustains life and makes a thriving human society

possible, but day-to-day weather patterns and longer-term climate variations mean that we live in

a world where we must constantly seek to improve our understanding of our planet and how we

interact with it. No climate component impacts us more than water, as precipitation and water

availability, drought and flooding, snow and ice storage and melt, and local and global sea level

are all dynamic systems driven by redistributions of water globally. These and innumerable other

components of the global water cycle impact nearly every person on Earth, from municipal water

managers seeking to best regulate local water supplies, to coastal communities seeking to understand

local sea level rise, to farmers whose entire annual income can hinge on proper drought planning.

Importantly, these water cycle impacts pose the greatest risk to the poorest communities around

the world, where flooding, drought, coastal erosion, and much more can devastate communities with

none of the needed resources to recover and rebuild. Therefore, if we as a society want to secure the

future livelihoods of everyone from the richest coastal towns to the poorest flood- or drought-prone

communities, we must start by understanding these water signals, and therefore must determine

ways to quantify these changes on the long-term (secular), seasonal, and short-term levels.

Over the past few decades, scientists have developed numerous ways to better understand

where water is (and is not) and how water storage changes over time. In situ measurements

of soil moisture, local sea level and tides, precipitation, river and lake levels, and more provide



www.manaraa.com

2

excellent local relative measurements, allowing individuals, municipalities, and scientists to better

understand local water challenges. However, such measurements come with a challenge that is

difficult to overcome: to understand the global water cycle, we need global measurements. While

local measurements in first world municipal areas are often taken for granted, collecting such

measurements across remote or poor areas becomes logistically impossible in situ. And even where

we have good knowledge of surface water variability, having an equally good understanding of

groundwater storage variability poses further challenges. Global measurement systems are needed,

and satellite remote sensing provides a solution.

1.1 Remotely sensing Earth signals via satellite observations

In order to create a global understanding of water-related climate variables, numerous satellite

missions have been launched over the past few decades, each tasked with observing a specific part of

the water-driven climate. Radar altimetry missions including multiple OSTM/Jason missions have

enabled records of the ocean’s mean sea surface, changing sea surface height anomalies, global mean

sea level, and anthropogenic sea level rise from 1992-present (Nerem et al., 2010; Church and White,

2011; Hamlington et al., 2014, and others). Laser and radar altimetry missions such as ICESat and

CryoSat-2 have quantified polar ice heights and ice sheet evolution (Shuman et al., 2006; Shepherd

et al., 2012; Zwally et al., 2015, and others). Over land, other missions have used interferometric

synthetic-aperture radar or optical measurements to target soil moisture, vegetation, and other

surface water measurements to improve our knowledge of hydrological systems. These missions have

proven successful in their own right, but their contributions are limited to surface mass variations.

No single one of these missions can capture the total water column of an area, including water

trapped in the canopy and top layers of soil through river and lake systems and into the deepest

parts of groundwater and aquifers. To measure this complete picture of terrestrial water storage

(TWS), NASA and the German Aerospace Center, Deutsches Zentrum fr Luft- und Raumfahrt
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(DLR), partnered together to launch the Gravity Recovery and Climate Experiment (GRACE)

mission, tasked with measuring and mapping Earth’s time-variable gravity field (Tapley et al.,

2004a). Gravity, the attraction of two objects with mass, varies spatially as mass on the Earth’s

surface varies geographically and in time as surface water and ice mass transport continuously

redistribute surface mass.

1.2 Geodesy

Outside the specialized field of Geodesy and certain surrounding physical science fields, grav-

ity as a concept is both fairly abstract and relatively simple. Anyone fortunate enough to have

completed a high school physics curriculum will be familiar with Newton’s Universal Law of Grav-

itation and understand that gravity is the natural result of two bodies of non-zero mass acting on

one another through a form of mutual attraction (Newton, 1687; National Governors Association

Center for Best Practices, 2010). With such an understanding, gravity is often considered a con-

stant value on Earth’s surface and that it changes inversely with the square of the distance between

the two bodies. However, Earth’s gravitational field is not due to a point mass located at the center

of the Earth or a single value that can be considered as a constant, as in many simple kinematics

applications. Instead, in the field of Geodesy - by one definition “a branch of applied mathematics

concerned with the determination of the size and shape of the earth and the exact positions of

points on its surface and with the description of variations of its gravity field” (Merriam-Webster)

- we focus on variations in gravity of Earth and other planetary bodies, spatially and in time.

As a field, Geodesy dates back to ancient times, to the first Greek philosophers interested

in Earth’s shape, who questioned if the Earth was flat or round. A more modern landmark in

the evolution of the field of Geodesy came in the 1700s, when the Acadèmie Royale des Sciences

tasked two missions with studying Earth’s precise shape by measuring the variation in a degree of

latitude at the equator and the North Pole, a story told with intriguing historical context in Hoare
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(2005). To summarize that endeavor, by the 1700s Earth’s roundness was well understood, but new

controversy existed as to the nature of that roundness. Namely, was Earth spherical or ellipsoidal,

and if the latter, was it an oblate or prolate ellipsoid? Newton and others suggested an oblate

ellipsoid due to Earth’s rotational forces, but others disagreed. The two missions, one led by Louis

Godin and Pierre Bouguer (after whom the Bouguer anomaly is named, a gravitational anomaly

due to the height at which gravity is measured and local terrain effects) to equatorial Peru and the

other by Pierre Louis Moreau de Maupertuis to the Arctic, proved Earth’s oblateness, or equatorial

bulge. In doing so, the field of Geodesy made an extraordinary leap forward in our knowledge of

Earth. Since then, countless work has been done refining our understanding of Earth’s size, shape,

and gravity field.

One of the major advances resulting from the French missions to measure Earth’s oblateness

was the rise to prominence of gravimetry in measuring Earth’s shape and constraining density mod-

els of Earth’s interior, as told in Nerem et al. (1995). As technological advances made gravimetric

devices more precise and more easily transportable, leaps forward in surveying and defining the

terrestrial reference frame were made. With the dawn of the satellite era in 1957 when Sputnik

first orbited the Earth, orbital tracking measurements became available to see the global effects

of Earth gravity on satellites, and in turn better characterize those gravitational effects. These

measurements, in conjunction with airborne and terrestrial gravimetry, have led to increasingly

more precise understandings of gravitational variations around the Earth.

Satellite geodesy as a science dates to the earliest satellites, whose observed orbital pertur-

bations due to Earth’s non-uniform gravity field improved models of Earth’s shape and structure.

NASA’s Apollo missions displayed an early need for planetary geodesy, as large mass anomalies on

the surface of the Moon posed real challenges in Lunar orbital maneuvering. Deep Space Network

tracking was used to observe orbital perturbations in Lunar orbit and advance surface mass models

of the Moon to ensure astronaut safety during orbit and landings (Muller and Sjogren, 1968). As

soon as the mid-1970s, satellite missions were flown specifically for geodesy purposes, with the Laser

Geodynamics Satellite (LAGEOS-1) launch in 1976 marking the first of many spherical satellites
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covered in retroreflectors to enable high precision laser ranging from Earth, and in turn very accu-

rately measure orbital perturbations due to Earth’s gravity field. Like in lunar orbit, a very good

understanding of gravitational perturbations in Earth orbit allows orders of magnitude improve-

ments to precise orbit determination, vital in almost all applications of spaceflight. Since then,

newer and more advanced missions designed to characterize Earth’s gravitational field have taken

flight, highlighted by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mis-

sion, which mapped what remains our most precise estimate of Earth’s mean gravity field, and

GRACE’s measurements of time-variable gravity (Pail et al., 2010; Tapley et al., 2004a). An inter-

esting piece of trivia related to satellite geodesy arising from these many numerous missions is that

Earth is not the planetary body whose global gravity field is most well understood . Instead, thanks

to the Gravity Recovery and Interior Laboratory (GRAIL) mission, our understanding of the lunar

gravity field is at a significantly higher resolution than Earth (though very precise local geodetic

measurements mean that certain portions of Earth’s gravity may be more well understood), as the

lack of a Lunar atmosphere allowed that mission to fly much closer to the lunar surface and the

time-variable elements of the lunar gravity field are much slower processes than on Earth (Lemoine

et al., 2013; Brown and McDonnell , 2012; Drake, 2012).

1.3 The Gravity Recovery and Climate Experiment

The GRACE mission was launched March 17, 2002 as a joint-venture between NASA and

DLR targeting the creation of a long-term record of variations in Earth’s gravity field. From 2002

to 2017, the GRACE mission enabled a more than 15-year record of Earth gravity solutions vital

to the Earth Sciences (Tapley et al., 2004a). From 2011 through the end of the mission, these

estimates grew increasingly more challenging due to continued degradation of onboard systems,

primarily driven by decreased battery life and associated issues such as the elimination of thermal

control and loss of the accelerometer on-board one of the two satellites (Tapley et al., 2016; Tapley ,
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2018). By mission end in October 2017, further battery degradation and diminished fuel reserves

ultimately led to mission end of life, with June 2017 serving as the final month of science data

(Cole and Buis, 2017; Tapley , 2018). All together, the GRACE mission provided 163 months of

time-variable gravity estimates, as well as atmospheric occultation estimates for weather models

and atmospheric density estimates for neutral density models (Tapley , 2018). GRACE Follow-On

(GRACE-FO), which launched in May 2018, is set to continue the GRACE record into the future

(Flechtner et al., 2016). This record has become a primary medium for studying glacial ice mass

loss in Greenland, Antarctica, and other regions and also for tracking extended drought, flooding,

and other large-scale hydrological signals (Luthcke et al., 2006; Velicogna and Wahr , 2006; Rodell

et al., 2006, 2018).

The GRACE and GRACE-FO missions each consist of a pair of identical satellites in low-

earth orbit, nominally 450-500 km in altitude (Tapley et al., 2004a). A nearly circular, polar orbit

(89.5◦ inclination) provides global coverage of Earth’s gravity field (Tapley et al., 2004a). Over the

course of the GRACE mission, the altitude of these satellites slowly decreased due to atmospheric

drag effects, ultimately falling below 400 km during the mission’s extended science phase before

eventually de-orbiting after October 2017 end of mission. GRACE-FO’s initial orbit altitude of

approximately 490 km allows for measurements to be of like kind. GRACE’s polar orbit provides

full global coverage, while a circular low altitude orbit provides the most detailed picture of the

observed gravity field, as higher altitudes result in smaller gravitational perturbation effects. An

even lower orbit would allow GRACE to capture an even more detailed picture of the gravity field,

but increased atmospheric drag would impose too costly a requirement for continuous thrusting for

maintaining altitude unless drag compensation becomes significantly more affordable.

The twin GRACE satellites, circling Earth in identical orbits and separated by approximately

220 km along that orbit, are linked by a K-band microwave ranging signal and directly measure

the changes in the distance and velocities between the two satellites to accuracies smaller than 10

micrometers (Wahr et al., 1998; Tapley et al., 2004a). As a point of reference, this is equal to

measuring the distance between an object in Seattle, WA and an object in Portland, OR to better
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than the thickness of a human hair. Onboard GPS instruments are used to determine the precise

positioning of both satellites, and terrestrial-based laser ranging systems are used to verify these

position estimates. Star tracker cameras on two axes provide spacecraft attitude information in

conjunction with orbital data. By using onboard accelerometers to account for non-conservative

forces such as atmospheric drag and solar radiation pressure, these measurements are combined to

estimate the monthly averaged global gravity field perturbing the orbits of the satellite pair from

all residual signals present in the microwave range and range-rate measurements. The gravity field

and gravitational accelerations are covered in more depth in Chapter 2.

1.4 GRACE Products

For much of the GRACE mission, time-variable gravity estimates have been strictly in the

form of global sets of spherical harmonics, developed and released in parallel by the University of

Texas at Austin’s Center for Space Research (CSR), NASA’s Jet Propulsion Laboratory (JPL),

and the German Research Center for Geosciences (GFZ) (Tapley et al., 2004a). These techniques

have proven useful because they allow for the computation of a global solution averaged over a

certain time period (Wahr et al., 1998), and have been used to study changes in global hydrologic

and cryospheric water storage. Regions with large ice mass loss, droughts, and strong annual and

inter-annual variations in water storage have been studied on timescales of years dating across the

entire GRACE mission (Velicogna and Wahr , 2006; Rodell et al., 2006).

GRACE spherical harmonic solutions are developed as unconstrained products, and named

as “Level-2” data products. Such spherical harmonic estimates represent the gravity field as a

set of differential Stokes coefficients to a set degree and order as a mathematical expansion of the

gravity field, covered in Chapter 2. These products range from 60 × 60 to 96 × 96 degree and

order realizations of the gravity field, with resolutions on the order of 300-400 km. These solutions

follow a standardized protocol, with each official center implementing a unique estimation system
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for determining these unconstrained fields (Bettadpur , 2018).

Due to the spatial and temporal coverage limits of the GRACE mission and processing

requirements of the GRACE release products, Level-2 spherical harmonic products have most often

been distributed as monthly fields, and often are delayed in release by one to two months. Basin

and regional studies of water storage have largely relied on the application of signal localization

techniques to the global spherical sets, such as the averaging kernel method described in Swenson

and Wahr (2002). These techniques must account for signal leakage effects across basin boundaries

due to the limited resolution of GRACE observations and the unconstrained nature of Level-2

products, and further must account for striping and ringing effects caused by correlated errors and

truncation of the Stokes coefficients at a maximum degree and order (Wahr et al., 1998; Swenson and

Wahr , 2002, 2006). These techniques further constrain the ability of GRACE monthly estimates

to accurately return regional mass estimates (Luthcke et al., 2006).

So that non-experts in fields outside geodesy might easily be able to make use of GRACE time-

variable gravity fields, a new type of product referred to as a “Level 3” or Tellus product (named

after the JPL portal through which these products are available) was introduced. These products

are gridded versions of the unregularized spherical harmonic solutions, with certain corrections ap-

plied for non-water signals such as land motion as well as attempts at containing leakage through

post-processing (Chambers, 2012; Swenson, 2012; Swenson and Wahr , 2006). However, these prod-

ucts are only implementations of the various post-processing techniques used with GRACE spherical

harmonics, and therefore are limited by the filtering choices applied to these products.

In recent years, work has been done using mass concentrations (mascons) to provide an

alternative to the spherical harmonic modeling technique. These mascon solutions use various

regularization techniques to better resolve localized gravity variations, solving for mass variations

in a finite number of equal-area mascon cells distributed across the globe (Luthcke et al., 2013;

Watkins et al., 2015; Save et al., 2016). Because each individual mascon is unique from those

surrounding it, mascons can be solved for individually, regionally, or as a global set, and these

regional studies of long-term mass change become as simple as the summing of mascons within a
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Figure 1.1: GRACE products have enabled the study of regional long-term mass fluctuations,

such as the multi-year drought in California, shown here from the GSFC monthly mascon solution.

Mascon solutions allow easy basin analysis by simply summing signals from each mascon over

a given basin of appropriate size and shape. Plot taken from the Mascon Visualization Tool:

http://ccar.colorado.edu/grace/ (Croteau and Nerem, 2016).

region. Figure 1.1 shows an example of this, depicting the multi-year drought over the California

basin recovered by the Goddard Space Flight Center’s (GSFC) monthly GRACE Global Mascon

solution. Spatial regularization techniques using correlations and constraints can be designed and

built into the estimation process for mascons, enabling solutions to be computed that otherwise

might be under-constrained (Sabaka et al., 2010; Luthcke et al., 2013). Alternative types of a priori

information pertaining to the data and expected resulting gravity field can be used, such as model-

driven covariance maps or information from recovered spherical harmonic fields to drive a solution

to convergence (Watkins et al., 2015; Save et al., 2016).

Mascons offer an alternative solution method to spherical harmonics by developing global

solutions of surface mass distribution using discrete, independent mass cells at or below the spatial

resolution of GRACE. Mascon formulations have long been utilized in quantifying variations in

surface mass distributions, dating back to unmanned satellites prior to Apollo to understand the

lunar gravity field and aid in Apollo navigation (Muller and Sjogren, 1968). More recently, GRACE-

derived regional and global mascon formulations have been shown to accurately recover expected

http://ccar.colorado.edu/grace/
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mass fluctuations, including water storage changes in the Amazon basin as well as ice mass loss in

polar regions such as the Greenland Ice Sheet (Rowlands et al., 2005; Luthcke et al., 2006). These

and similar works take advantage of a key characteristic of mascons: that individual mascons can be

determined as distinct subsets of the larger global set. This dissertation uses a mascon formulation

to resolve daily estimates for TWS, and this formulation is described in Chapter 2.

1.5 Scientific Contributions of GRACE

The 15+ year record from GRACE has led to new scientific insights in wide ranging areas of

research. As an example metric illustrating the wide reach of GRACE data in the Earth Sciences,

hundreds of studies analyzing GRACE data were presented at the 2017 AGU Fall Meeting in New

Orleans, Louisiana in sessions covering Geodesy, Hydrology, Glaciology, and Ocean Sciences, and

dozens more investigated future GRACE-like missions (AGU , 2017). GRACE data has provided

new and otherwise impossible insights into these and other fields by providing a global, unbiased

picture of time-variable gravity, and with it invaluable information on global water transport. This

section serves to provide a sampling of the many varied contributions the GRACE mission has

made to these fields.

1.5.1 Hydrology

Seasonal and secular TWS signals are a major component of GRACE time-variable gravity

estimates. Monthly GRACE estimates have allowed for the recovery of seasonal water storage

in river basins worldwide, beginning with some of the earliest scientific results from the GRACE

mission. Swenson and Wahr (2002) presented a method for basin averages from GRACE spherical

harmonic solutions using spatial averaging kernels. This and other techniques have been used to

characterize terrestrial and groundwater storage changes in the Amazon, Mississippi, India, and

many more basins (Tapley , 2004; Rodell et al., 2006).
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Monthly GRACE fields have contributed significantly in characterizing basin-wide drought

conditions globally. Thomas et al. (2014) developed a technique for relating current TWS conditions

with historical climatology and determining the magnitude and significance of drought conditions

each month, and showed strong correlations between that index and other meteorological drought

records. Likewise, anomalous increases in TWS have been detected, most notably during the 2011

La Niña that was said to be “so strong, the oceans fell,” where excess terrestrial water storage over

interior Australia was shown to have caused an extended drop in global mean sea level (GMSL) of

5 mm from 2010 through mid-2011 (Boening et al., 2012). Tourian et al. (2018) demonstrated a

method for using GRACE to quantify the total drainable water storage in humid climates such as

the many sub-basins of the Amazon system.

As GRACE provides a global picture of the total water column, extensive efforts have been

made in the fields of modeling and data assimilation to incorporate GRACE TWS estimates into

assimilative models and forecasting tools. Livneh and Lettenmaier (2012) showed that GRACE

data can be combined with meteorological and evapotranspiration data to estimate multiple com-

ponents of the terrestrial water budget using land surface models, though the GRACE monthly

temporal resolution and coarser spatial resolution (compared to the other datasets) contributed

the largest uncertainties to the study and highlighted challenges with using multiple independent

data sets in determining the water budget. Zaitchik et al. (2008) demonstrated improvements to

groundwater modeling skill in the Catchment Land Surface Model (CLSM) and in correlations with

river gauge flow measurements in the Mississippi River basin. Houborg et al. (2012) showed that

the incorporation of GRACE data into a system based on the CLSM showed statistically signif-

icant improvements in the hydrological modeling skill of the system across large portions of the

United States, suggesting GRACE could improve regional drought detection. Kumar et al. (2016)

showed similar results using the North American Land Data Assimilation System (NLDAS). Data

assimilation has also been used to downscale GRACE information and vertically partition GRACE

TWS into various water storage components, combining GRACE observations with other data

such as surface soil moisture (Girotto et al., 2016). Later work discussed some of the benefits and
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cautionary tales of these data assimilation efforts, pointing to assimilation efforts in India that did

not properly account for groundwater pumping, which in turn led to realistic TWS recovery but

erroneous evapotranspiration results (Girotto et al., 2017).

To date, GRACE has been primarily used for studies of longer-wavelength signals such as

annual cycles and long-term drought due to the monthly resolution of most GRACE products.

However, for applications such as drought monitoring, water resource management, and data as-

similation, monthly resolution poses problems associated with temporal aliasing and delays in

information availability. This dissertation studies how a daily solution might be able to provide

better temporal information at the cost of spatial resolution, which could then be used to better

inform these applications in the future.

1.5.2 Glaciology

Along with hydrologic signals, changes in glacial ice mass are the largest water signals in the

GRACE record. These signals have been the focus of extensive study, as efforts to quantify and map

these mass losses are extremely important for understanding climate change implications. Ice melt

experienced in Greenland, Antarctica, Alaska, and smaller mountain glaciers not only transforms

the gravity field of the local area, but this melt leads directly to sea level rise as ocean mass increases

with runoff. As an example of the catastrophic potential of glacial ice melt, estimates show that if

the entire Antarctic and Greenland ice sheets were to melt, the total resulting rise in global mean

sea level would be approximately 60 and 6 meters, respectively (Church et al., 2013). Though

such total collapse would not be likely to occur even over 1000 years, this is still an important

point to consider as even small increases in local sea level would lead to severe consequences due

to increased storm surge and coastal flooding, even without accounting for feedback effects of more

energy content stored in the oceans (Tebaldi et al., 2012).

Among numerous methods for estimating ice melt, GRACE can measure continental-scale

mass loss by tracking changes in the gravitational attraction of glaciers, while other methods of

estimating ice mass loss (for example, by measuring changes in glacial height with laser altimetry)
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require knowledge of firm density and compaction, ice flow, and more. However, mass loss estimates

from GRACE are contaminated by glacial isostatic adjustment (GIA), the crustal rebounding effect

due to past deformation during the last ice age. Therefore, when computing mass change estimates

in glacial regions affected by GIA, a GIA model such as A et al. (2013) is commonly applied to

separate secular gravity signals due to crustal motion from those due to ice melt. Estimates from

GRACE show ice melt ranging from 230-280 Gt/yr for the Greenland Ice Sheet and 80-180 Gt/yr

for Antarctica, with these mass losses primarily originating in the West Antarctic Ice Sheet and

coastal Greenland, and non-negligible accelerations have also begun to be detected (Luthcke et al.,

2013; Velicogna et al., 2014). Similar estimates show that Greenland contributes 0.66 mm/yr to

GMSL rise, while Antarctica adds 0.19 mm/year, and melt in mountain glaciers in the Gulf of

Alaska, Patagonia, and Himalayas account for 0.51 mm/yr (Nerem et al., 2018). Interdisciplinary

efforts such as the ice sheet mass balance inter-comparison exercise (IMBIE) have used GRACE

ice mass loss estimates in conjunction with other data and surface mass balance models to further

characterize glacial ice mass changes over the past few decades (Shepherd et al., 2018). As the

GRACE-FO mission moves forward, the further lengthening of this record will continue to be a

major contribution from the GRACE missions, and efforts to detect both trends and accelerations

in ice melt will become more precise.

While glacial mass balance is not a key motivation for this dissertation, the work presented

is very relevant to many such applications. Greenland, Antarctica, and other high-latitude glacial

regions are located in the most observable portions of the gravity field at daily timescales. Due to

the GRACE polar orbit, orbit groundtracks are focused at the poles, and provide both the best

overlapping observation geometry and most dense spatial coverage. Therefore, the daily solution

resulting from this work is directly applicable to topics such as surface mass balance modeling

with GRACE. Additionally, atmospheric mis-modeling over Antarctica due to poor meteorological

coverage can result in large errors for mass balance over that continent from GRACE, and daily

solutions may provide new insights to better inform these atmospheric models (Hardy et al., 2017).
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1.5.3 Oceanography

Fluctuations in total ocean mass content and ocean mass distribution are significant gravi-

tational features and observable to GRACE, though these signals are much smaller than those for

TWS and glaciology. Ocean mass is in natural harmony with land hydrology, as seasonal fluctu-

ations in TWS are in constant exchange with the oceans. Wet periods where more rain falls over

land than other times of year lead to decreases in ocean mass, while evaporation and runoff see

that water eventually make its way in large part back into the oceans and subsequent periods with

less land precipitation lead to increases in ocean mass. In addition, over the GRACE time period

the oceans have seen a notable upward trend in mass primarily due to glacial ice melt discussed in

Section 1.5.2.

Secular increases in GMSL due to glacial ice melt are perhaps one of the most sought after

measurements from GRACE in oceans. Increases in GMSL are the result of two causes: steric

(or temperature-driven) sea level rise and eustatic (or mass-driven) sea level rise. Steric sea level

rise is due to thermal expansion of ocean water due to warming of the water. These effects do

not cause any change in ocean mass, and are therefore not observable by GRACE, though in situ

measurements from globally distributed floats allow this component of sea level rise to be estimated.

On the other hand, eustatic sea level rise is directly measurable with GRACE, as increases in ocean

mass directly lead to changes in Earth’s gravity field. Taken together, steric and eustatic sea level

rise should account for the total sea level rise as observed by satellite altimetry missions such as

OSTM/Jason. Annual amplitudes of GMSL variations due to mass fluctuations were shown to be 1

cm, with regional patterns as high as 4 cm locally (Johnson and Chambers, 2013). Chambers et al.

(2017) showed closure of the so-called “sea level budget” for long period trends by examining these

signals, though showed disagreements at inter-annual timescales. In addition to GMSL, efforts

such as Chambers and Bonin (2012) have investigated regional variations in ocean mass content

from GRACE so as to better understand ocean mass effects on Earth’s time-variable gravity field.

GRACE also has been used to improve understanding of ocean currents and regional variation
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through ocean bottom pressure (OBP) measurements (Chambers and Bonin, 2012; Johnson and

Chambers, 2013). Landerer et al. (2015) showed that Lower North Atlantic Deep Water can be

observed by GRACE alone, allowing recovery of interannual OBP anomalies. GRACE has been

used in quantifying the extent to which sea level rise is accelerating due to ocean mass change

(Nerem et al., 2018).

The daily GRACE solutions developed in this dissertation do not focus on oceans and thus

will not directly contribute to oceanography with GRACE. However, the developed methods can be

extended to potentially improve sub-monthly tidal models. Such an extension will require efforts

to best regularize an ocean solution, as done for TWS in this dissertation in Chapter 3.

1.5.4 Solid Earth

Though a primary focus of this dissertation, changes in water storage globally are not the only

time-variable gravity signals observed by GRACE. Two solid earth signal types are of particular

note, as they comprise large portions of the recovered monthly estimates and could cause confusion

or invalid conclusions in analyses of water storage signals if not properly taken into account. These

are glacial isostatic adjustment (mentioned briefly in Section 1.5.2) and large earthquakes.

Glacial Isostatic Adjustment, or GIA (sometimes historically referred to as Post-Glacial Re-

bound), is the result of Earth’s viscoelastic response to large changes in surface mass loading as

a result of the Pleistocene ice age, lasting from approximately 3 million to 11 thousand years ago

(Caron et al., 2018). This period saw large-scale increases in grounded glaciation over significant

portions of Earth’s more northern latitudes. In North America, kilometer thick glaciers extended

through modern day Canada into portions of the northern United States, causing a downward de-

formation of Earth’s crust in these and surrounding areas, and in turn forcing Earth’s viscoelastic

mantle outward and away from the glaciated areas. Similar glaciers extended through parts of Eu-

rope, Asia, and Antarctica. Since the period when these large ice masses melted, the compressed

Earth has been slowly rebounding to an uncompressed state. As this rebound occurs, mantle

material flows back into place, leading to positive mass changes where glaciers once compressed
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the surface and negative mass changes outside these areas where the mantle material is flowing

from. GIA occurs on timescales of tens of thousands of years, and appears in the GRACE history

as a linear trend, with the largest signals located over parts of North America, Scandinavia, and

Antarctica. GRACE makes no distinction between these mass trends and trends in TWS or ice

melt, and therefore GIA models must be used to remove these non-water signals from the GRACE

record in order to assess trends in surface water changes. Efforts such as those by A et al. (2013)

and Caron et al. (2018) use statistical techniques in conjunction with models of Earth composition

and mantle viscosity and in situ observations from GPS and relative sea level measurements in

determining models of GIA. These various models can differ significantly, resulting in wide ranges

in corrected ice mass loss estimates for less constrained regions such as portions of Antarctica.

During the GRACE mission, a number of very large earthquakes caused permanent and mea-

surable changes in Earth’s gravity field. Perhaps the two most notable events were the December

2004 Sumatra-Andaman quake (magnitude 9.4) and 2011 Tohoku quake (magnitude 9.0), whose

impacts on Earth’s gravity field were characterized by Han et al. (2006, 2008) and Zhang et al.

(2016), respectively. Both earthquakes resulted in co-seismic shifts in the gravity field marked by

a bi-modal distribution of mass increase on one side of the earthquake and mass decrease on the

other side followed by post-seismic exponential decay over the following months.

The daily GRACE solutions developed here do not specifically target solid earth changes

to the gravity field as a signal of interest. Many solid earth signals such as GIA are on long

timescales and monthly solutions with better spatial resolution already provide the information

potentially relevant to these signals. Earthquakes are an interesting case, as they occur relatively

quickly and daily fields might best capture the timing of those changes. However, if such a field is

recovered after the earthquake, it does not significantly add anything to capture this at low spatial

resolutions with a daily solution since the earthquake’s time will already be known. On the other

hand, a recent study by Panet et al. (2018) on the Tohoku 2011 earthquake suggests that there

might be pre-seismic loading signals visible in the GRACE record that could be a precursor to the

earthquake. In this case, if a reliable prediction mechanism were to be developed, daily solutions
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might be able to provide advanced warning of dangerous pre-seismic surface loading sometime in

the future. Until this effect is better understood, however, daily solution efforts are best directed

elsewhere.

1.5.5 Other Notable Contributions

In addition to the already presented fields, GRACE data has been used for a variety of

other purposes as well. While there are too many examples to list, a sampling is presented here

to demonstrate the wide variety of research benefiting from GRACE data. Wahr et al. (2015)

discussed how trends in Release 5 GRACE spherical harmonic solutions include degree-2, order-1

(see Chapter 2) non-mass secular signals resulting from pole tide effects due to glacial ice melt,

which contaminate mass change signals of interest for scientists, and this result ultimately fixed

a mis-modeling error in developing surface mass change products. Using GRACE’s two onboard

GPS instruments, radio occultation measurements have allowed improvements in meteorological

models (Beyerle et al., 2005). The long record of GRACE observations has also contributed to

improvements in our understanding of the mean static gravity field and geoid (developed in the

Chapter 2) both alone and in combination with other satellite gravity measurements such as from

GOCE (Pail et al., 2010).

1.6 Problem of Interest: Improving the Temporal Information from GRACE

The GRACE mission has provided insights into a wide variety of Earth processes, in a sense

allowing scientists to “weigh” the continents and oceans in ways never before possible. Unfortu-

nately, a tradeoff between spatial and temporal resolution must be made due to the choice of a

polar orbit. The monthly resolution of GRACE’s traditional release products causes issues with

fully utilizing GRACE data to tune hydrological models and forecasting. Additionally, a one- to

two-month delay in the release of these products limits the usefulness of these products for near
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real-time applications. As a result, efforts to use this data in assimilative hydrological models have

thus far been limited to using GRACE as a low temporal resolution, objective constraint on hydro-

logic models (Famiglietti and Rodell , 2013). To make better use of GRACE information for such

purposes, better temporal and spatial information is needed.

In order to increase the temporal coverage of GRACE data products, various groups have

developed sub-monthly datasets on 10-day and weekly intervals. At least one group has developed

daily Kalman smoothed spherical harmonic solutions utilizing spatial and temporal constraints

in the solution process to best characterize variations in water storage (Kurtenbach et al., 2012;

Mayer-Gürr et al., 2016). With all of these solutions, however, limitations are imposed by the daily

coverage of the GRACE orbit, which does not observe the entire Earth on any given day. In fact, in

a single day, large portions of Earth are more than three times as far away from the GRACE orbit

as regions that GRACE flies directly over, meaning that GRACE only provides partial coverage

on daily timescales, as shown in Figure 1.2. As these solutions are derived in spherical harmonic

space - inherently requiring a global estimate of the gravity field - difficulties arise in validating

the accuracy of portions of each estimate that receive little or no coverage during the timespan of

each 10-day, weekly, or daily estimate. To attempt to overcome these challenges, Kurtenbach et al.

(2012) drives the Kalman filter estimation process with geophysical models tuned to propagate

forward each day’s estimate. This solution is called the ITSG-Grace2016 Daily solution, and is co-

estimated as spherical harmonics to degree and order 40 with a higher resolution monthly estimate.

In order to parameterize the Kalman smoother, assumptions are made about signal continuities

between days, resulting in a daily-updated solution but not individual daily information.

To date, two other attempts - both at CSR - have been made at the creation of a daily

mascon product. In both cases, the methodologies have differed substantially from that proposed

by this project. Sakumura et al. (2016) used a 21-day sliding window to create a mascon solution

with daily resolution using regularization methods described in Save et al. (2016). This solution

is notable for improving the temporal resolution of GRACE mascon products and for developing a

daily product that is entire driven by GRACE observations, but the designed 21-day sliding window
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Figure 1.2: Minimum distance of mascons from GRACE orbit for a sample day. In a given day,

the GRACE mission offers only partial coverage of the Earth, with some mascons (dark red) more

than 3 times as far from the day’s track as mascons that are flown directly above (white).

means that daily estimates are not independent, and the resolution of the solution is thus not truly

daily. Ongoing work at CSR on a “swath” formulation, which updates only those mascons closest

to the GRACE groundtrack each day from strictly one day’s worth of data, also attempts to resolve

daily variations in mascon space. This swath constrains mascons by distance to the orbital track,

with those mascons farthest from the GRACE orbit on a given day constrained such that they are

not allowed to vary for that day. However, the choice of a swath design adds complications to the

design and validation portions of a daily estimate, and necessitates certain assumptions be made.

Chapter 3 discusses this particular design option in more detail, and why a decision was made to

pursue a novel third path to daily solutions in this dissertation: combining low-spatial and high-

temporal resolution daily estimates for a global set of land mascons with high-spatial resolution

monthly estimates to create a mixed or hierarchical GRACE TWS estimate on daily timescales.

The work presented in this dissertation uses the unique characteristics of mascons to develop
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a global solution that is updated daily using the new data for each day. This solution provides a

GRACE daily-updated TWS estimate at the highest achievable temporal resolution. This solution

is computed using a least squares approach derived from the technique used to calculate the current

GSFC monthly mascon solution. In developing this solution, this research will address the following

questions:

(1) To what extent can daily GRACE gravity field estimates better resolve sub-monthly local

and regional terrestrial water storage?

(2) What limitations exist on the extent to which GRACE can recover sub-monthly terrestrial

water storage, and how might the design of a daily solution be optimized to minimize these

limitations?

Resulting from this research is a daily GRACE solution that can describe large spatial scale TWS

changes daily, with applications related to basin water storage. This solution delivers a new objec-

tive data set for use in drought and flood monitors and hydrologic forecasting.

1.7 Overview of dissertation

This document details the development of a daily GRACE mascon solution, covering neces-

sary background theory as well as solution design, signal content, and resolution.

Chapter 2 discusses prerequisite theory underlying our modern understanding of the gravity

field, examines least squares estimation as it relates to GRACE, and presents the gravity field as

a global set of mascon cells. In this chapter, the technical knowledge and techniques required to

complete this work is presented, outlining the representation of the gravity field as a set of spherical

harmonics and the realization of this field in mascon space. Earth’s gravitational potential is derived

from Newton’s law of universal gravitation and is expressed in a spherical frame using a global set

of Stokes coefficients. Resulting gravitational accelerations on a satellite experiencing this potential

are provided as part of an explanation of how GRACE observes the gravity field, and geoid and
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surface mass representations of the gravity field are presented. Finally, weighted least squares with

a priori information is discussed.

Chapter 3 builds on Chapter 2 by presenting the developed daily mascon solution. Mascon

solution regularization is a key focus of this chapter, as this regularization both enables improved

realizations of the gravity field with respect to leakage and correlated errors and provides a mecha-

nism through which signal resolution can be estimated and compared with models. Proper design

of the solution regularization strategy includes the majority of decision-making and effort during

development, and solution analyses are conducted in part to prove a good regularization strategy

has been developed.

Chapter 4 presents a simulation study that was conducted to test the designed estimation

system and quantify the expected spatial information content of the daily solutions. With real

GRACE data, the “truth” is unknown. This simulation provides an opportunity to quantify the

recovery skill of the developed solution using a known signal. Results of the simulation are then

used to validate further analysis of the real daily solution.

Chapter 5 builds on insights from the simulation study to further quantify the spatial infor-

mation recovered by the solution. The spatial information contained in the solution is quantified

globally, and includes the quantification of leakage effects into and out of basins due to the designed

regularization discussed in Chapter 3. A rigorous analysis of recovered TWS is presented in the

form of a multi-basin analysis as compared to TWS model output from the North American Land

Data Assimilation System (NLDAS). As a point of comparison between mid and high latitudes,

polar basins are then briefly considered.

Chapter 6 summarizes this work and presents conclusions of the study. Future considerations

are suggested as extensions of this research.
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Theory

This chapter discusses background knowledge and theory necessary for the development of

the daily GRACE solutions presented in this dissertation. Modeling of Earth’s gravitational field

is discussed, beginning with Newton’s universal law of gravitation and covering the representation

of the gravity field as a set of spherical harmonic coefficients, ultimately covering the realization of

the gravity field as a global set of mascons. As part of this discussion, the geoid (an equipotential

surface approximating sea level) is covered, as is computation of surface mass variability as they

relate to changes in the gravitational field. Least squares estimation is then briefly discussed.

2.1 Earth’s gravitational potential

Like all celestial bodies, Earth is a heterogeneous mass of varying shape and composition, and

thus varying gravitational potential. General kinematics often represents acceleration due to Earth

gravity as a single value (e.g., 9.81 meters per second per second), but in fact this is a simplification

of a more dynamic topic. Here, Earth’s gravity field is derived following Kaula (2000) and Vallado

(2001). For a fully rigorous derivation, the reader is encouraged to consult Kaula (2000).

Newton’s universal law of gravitation states that the force of attraction between two bodies of

mass is directly proportional to the amount of mass of those two bodies and inversely proportional
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to the square of the distance between those two bodies, following:

F = G
mM

r2
r̂, (2.1)

where m and M are the masses of the two bodies, r is the distance vector between the two bodies

and r is the scalar distance between these bodies (r = |r| =
√
x2 + y2 + z2), r̂ is the normalized

unit vector of r, and G is a universal constant. In the S.I. system, with meters as the standard unit

of distance, kilograms as the standard unit of mass, and seconds as the standard unit of time, G is

approximately equal to 6.67 × 10−11 m3/kg/s2. Applying Newton’s second law to an Earth-fixed

Cartesian frame and assuming constant mass m,

F = ma, (2.2)

the equation for vector acceleration of m in the Earth-fixed frame due to the gravitational attraction

from Earth’s mass M is then

a =
GM

r2
r̂. (2.3)

This acceleration a can be defined as the gradient of gravitation potential, V , as

a = ∇V, (2.4)

where V for a single particle of mass mi can be expressed as

V =
Gmi

r
= Gmi

(
x2 + y2 + z2

)− 1
2 . (2.5)

For a large body of mass such as Earth, the body can be considered as a continuous body of many

infinitesimal particles of varying densities ρ at unique cartesian (or rectangular) positions r(x, y, z),

and the total potential of the body is the integral of these particles in space:

V = G
∑
i

mi

ri
= G

∫
x

∫
y

∫
z

ρ(x, y, z)

r(x, y, z)
dz dy dx (2.6)

.
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From the total potential, the acceleration is then

a =


∂V
∂x

∂V
∂y

∂V
∂z

 =


−GM

(
x2 + y2 + z2

)− 3
2 x

−GM
(
x2 + y2 + z2

)− 3
2 y

−GM
(
x2 + y2 + z2

)− 3
2 z

 =


−GM x

r3

−GM y
r3

−GM z
r3

 (2.7)

Taking the second derivative of each term,
∂2V
∂x2

∂2V
∂y2

∂2V
∂z2

 =


−GM

(
1
r3
− 3x

2r5
2x
)

−GM
(

1
r3
− 3y

2r5
2y
)

−GM
(

1
r3
− 3z

2r5
2z
)

 =


GM

(
− 1
r3

+ 3x2

r5

)
GM

(
− 1
r3

+ 3y2

r5

)
GM

(
− 1
r3

+ 3z2

r5

)

 (2.8)

In Cartesian space, Laplace’s Equation gives

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= 0. (2.9)

Substituting from Equation 2.8 for ∇2V ,

∇2V = GM

(
− 1

r3
+

3x2

r5

)
+GM

(
− 1

r3
+

3y2

r5

)
+GM

(
− 1

r3
+

3z2

r5

)
= 0, (2.10)

and reducing,

∇2V = GM

(
− 3

r3
+

3
(
x2 + y2 + z2

)
r5

)
= 0 (2.11)

For many Earth applications, including geodesy, it is common to transform from a cartesian

frame into a spherical coordinate frame, defining our coordinates in terms of latitude φ, longitude

λ, and radius r, where

x = r cosφ cosλ,

y = r cosφ sinλ,

z = r sinφ.

(2.12)

Differentiating and solving the system of equations for dx, dy, and dz, it is straightforward to

determine

dr = cosφ cosλ dx+ cosφ sinλ dy + sinφ dz,

dφ = −r−1 sinφ cosλ dx− r−1 sinφ sinλ dy + r−1 cosφ dz,

dλ = −r−1 cos−1 φ sinλ dx+ r−1 cos−1 φ cosλ dy.

(2.13)
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The partial derivative of the potential with respect to x, y, and z can then be determined by

∂V

∂x
=
∂V

∂r

∂r

∂x
+
∂V

∂φ

∂φ

∂x
+
∂V

∂λ

∂λ

∂x

=
∂V

∂r
cosφ cosλ− ∂V

∂φ
r−1 sinφ cosλ− ∂V

∂λ
r−1 cos−1 φ sinλ,

∂V

∂y
=
∂V

∂r

∂r

∂y
+
∂V

∂φ

∂φ

∂y
+
∂V

∂λ

∂λ

∂y

=
∂V

∂r
cosφ sinλ− ∂V

∂φ
r−1 sinφ sinλ+

∂V

∂λ
r−1 cos−1 φ cosλ,

∂V

∂z
=
∂V

∂r

∂r

∂z
+
∂V

∂φ

∂φ

∂z
+
∂V

∂λ

∂λ

∂z

=
∂V

∂r
sinφ+

∂V

∂φ
r−1 cosφ.

After computing the second partial derivative terms, Laplace’s Equation is expressed in

spherical coordinates as

r2∇2V =
∂

∂r

(
r2
∂V

∂r

)
+ cos−1 φ

∂

∂φ

(
cosφ

∂V

∂φ

)
+ cos−2 φ

∂2V

∂λ2
= 0. (2.14)

To solve Laplace’s Equation, the potential can be expressedas

V = R(r)Φ(φ)Λ(λ), (2.15)

a function where the total potential is the product of a function of r only, a function of φ only, and

a function of λ only. Substituting this expression into 2.14 and reducing, the equation becomes

R−1
∂

∂r

(
r2
∂R

∂r

)
+ Φ−1 cos−1 φ

∂

∂φ

(
cosφ

∂Φ

∂φ

)
+ Λ−1 cos−2 φ

∂2Λ

∂λ2
= 0. (2.16)

As R, Φ, and Λ are separable functions with independent variables, the partial derivatives can then

be realized as absolute derivatives, and Equation 2.16 as

R−1
d

dr

(
r2
dR

dr

)
+ Φ−1 cos−1 φ

d

dφ

(
cosφ

dΦ

dφ

)
+ Λ−1 cos−2 φ

d2Λ

dλ2
= 0. (2.17)

The first part of the function is only a function of r, and therefore must be constant. Setting this

term to −l(l + 1), where l is a positive integer, and differentiating gives

r2
d2R

dr2
+ 2r

dR

dr
− l(l + 1)R = 0 (2.18)
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As each power x for dx

drxR is multiplied by a term rx, Equation 2.18 suggests that R is of the

form rk, it is straightforward to substitute this into the equation as

r2
d2(rk)

dr2
+ 2r

d(rk)

dr
− l(l + 1)rk = 0 (2.19)

and solving the equation,

0 = r2k(k − 1)rk−2 + 2rkrk−1 − l(l + 1)rk,

= k(k − 1)rk + 2krk − l(l + 1)rk,

= rk (k(k − 1) + 2k − l(l + 1)) ,

= k2 + k − l(l + 1),

which has the solutions k = l and k = −(l + 1), and R therefore is

R = Arl +Br−(l+1) (2.20)

where A and B are arbitrary constants of integration. A boundary condition for gravitational

potential is that the potential must be 0 at infinity. Substituting, it can be determined that A = 0

from

0 = A(∞)l +B(∞)−(l+1),

= A(∞)l +B
1

(∞)(l+1)
,

= A(∞)l,

and

R = Br−(l+1). (2.21)

Further substituting into Equation 2.17 and reducing, it is possible to obtain

l(l + 1) cos2 φ+
cosφ

Φ

d

dφ

(
cosφ

∂Φ

∂φ

)
+

1

Λ

d2Λ

dλ2
= 0. (2.22)

The final term from this equation is the only term in the equation that is dependent on longitude.

For the equation to hold, this term must therefore be constant. Setting this constant to −m2,

1

Λ

d2Λ

dλ2
= −m2 (2.23)
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and integrating, a solution for Λ is determined as

Λ = C cosmλ+ S sinmλ, (2.24)

where C and S are arbitrary constants.

Then, substituting −m2 into Equation 2.17, a form of the equation that is only a function of

φ can be developed:

0 = l(l + 1) cos2 φ+
cosφ

Φ

d

dφ

(
cosφ

dΦ

dφ

)
−m2

= l(l + 1)Φ +
1

cosφ

d

dφ

(
cosφ

dΦ

dφ

)
−m2 Φ

cos2 φ

=
1

cosφ

d

dφ

(
cosφ

dΦ

dφ

)
+

[
l(l + 1)− m2

cos2 φ

]
Φ.

From here, a series of substitutions and various developed assumptions presented in Kaula (2000)

to solve for Φ can be used, ultimately determining

Φ = Plm(sinφ) = cosm φ

k∑
t=0

Tlmt sinl−m−2t φ (2.25)

where k is the integer part of (l−m)/2), Plm(sinφ) is called a Legendre associated function, and l

and m are a set of subscripts.

Substituting Equations 2.21, 2.25, and 2.24 into Equation 2.15 and solving for the solution

to the Laplace Equation, the total potential is then

V (r, φ, λ) =
∞∑
l=0

l∑
m=0

1

rl+1
Plm (sinφ) [Clm cosmλ+ Slm sinmλ] . (2.26)

In geodesy, subscripts l and m are referred to as the degrees and orders of the spherical expansion.

As degree and order increase, the potential components of those degrees and orders are higher

harmonic frequency signals and therefore increasingly finer-detail refinements to the potential.

Figure 2.1 shows the unitless spatial patterns of C and S spherical harmonic coefficients through

degree and order 4. Note that there are no S terms of order m = 0 shown, as (Slm sinmλ)|m=0 = 0

for all λ. Also, it is helpful to define a few terms relating to the spherical harmonic coefficients Clm

and Slm: zonal coefficients are those coefficients with order m = 0 and describe mass distributions
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along latitudinal sections, sectoral coefficients are those where the order m equals the degree l

and describe mass distribution along longitudinal sections, and tesseral coefficients are all other

coefficients and describe all other mass distributions in checkerboard-like patterns.

Figure 2.1: Spherical harmonic spatial patters through degree and order 4. Zonal harmonics are

the center column, where m = 0. Sectoral coefficients are the first and last plots in each row where

l = m. Tesseral coefficients are the remaining plots. Note that the total mass term, C0,0, is not

shown. Reds and blues of equal darkness on any single plot are equal in magnitude and opposite

in sign, and magnitudes increase linearly with darkness.

For computational reasons, it is useful to normalize the spherical harmonic representation of

the potential in Equation 2.26. This aids in both making the coefficients more readily comparable

and in ensuring computational efficiency and stability on traditional double-precision float computer

architectures. Following GRACE Level-2 processing standards from Bettadpur (2018), the potential

at any time t is expressed in terms of a set of normalized Legendre functions P̃lm and spherical
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harmonics C lm and Slm as

V (r, φ, λ, t) =
µ⊕
r

∞∑
l=0

(a⊕
r

)l l∑
m=0

P̃lm (sinφ)
[
C lm(t) cosmλ+ Slm(t) sinmλ

]
, (2.27)

where Earth gravitational parameter µ⊕ = GM⊕, M⊕ is the mass of the Earth, and a⊕ is a

mean equatorial radius. The Earth gravitational parameter is often used in geodesy rather than G

and M⊕ separately because the product of these two terms is more well known than either term

individually. The associated Legendre polynomials are normalized by

P̃lm sin(φ) = NlmPlm(sinφ), (2.28)

where

Nlm =

√
(2− δ0m)(2l + 1)(l −m)!

(l +m)!
(2.29)

and the Kronecker delta δ0m is defined as 1 for m = 0 and as 0 otherwise. The normalized spherical

harmonic terms are likewise normalized byC lmSlm

 =
1

(2l + 1)M⊕

∫
r′

∫
φ′

∫
λ′

(
r
′

a⊕

)l
P̃lm

(
sinφ

′
)cosmλ

′

sinmλ
′

 dM (2.30)

and integration is done globally for mass elements dM for the entire Earth system. Together, this

normalized potential is consistent with other geodetic work, including other gravity field represen-

tations such as EGM96 (Bettadpur , 2018).

In spherical harmonics, the degree 0 term accounts for the total mass of the system, while

the degree 1 terms account for the center of mass relative to the center of whatever reference frame

is used to represent the system’s potential. In Earth satellite geodesy, it is convention to define the

origin of the reference frame as the center of mass of the Earth system, therefore eliminating degree

1 terms from Equation 2.27. In addition, while the potential can be expressed to an infinite degree

and order, it is typical in geodesy and in GRACE to truncate that expansion at some maximum

Nmax. Taking this into account and recognizing that the degree 0 component of the summation is

simply µ⊕/r, the fully normalized potential equation can then be expressed as

V (r, φ, λ, t) =
µ⊕
r

+
µ⊕
r

Nmax∑
l=2

(a⊕
r

)l l∑
m=0

P̃lm (sinφ)
[
C lm(t) cosmλ+ Slm(t) sinmλ

]
. (2.31)
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2.2 Gravitational accelerations and GRACE

A satellite in orbit about Earth experiences accelerations due to the Earth’s gravitational

potential. These accelerations are what actually allow GRACE to work. The GRACE mission is

composed of two satellites, that continuously measures the range and range-rates between the satel-

lites using microwave interferometric ranging. These satellites fly in a leader-follower configuration,

where one satellite first flies over gravitational anomalies before the second then follows it over the

same anomaly. For a positive anomaly, the leading satellite is accelerated towards that anomaly

as it approaches, increasing the range between the satellites and measuring a positive range-range.

Then, as the satellite flies over and begins to move past the anomaly, the extra gravitational force

acts in the opposite direction, decelerating the first satellite and decreasing the range between

the satellites. Finally, as the second satellite approaches, flies over, and passes the anomaly, that

satellite is first accelerated forward before being decelerated and ultimately maintaining the origi-

nal configuration with respect the the lead satellite prior to approaching the gravitational anomaly.

GRACE uses position measurements from GPS and laser ranging, attitude measurements from star

tracker instruments, non-conservative force estimates from on-board accelerometers, and range and

range-rate measurements between the satellites to then map these gravitational anomalies and form

a complete picture of the gravity field. In this section, the classical formulation of acceleration due

to gravitational potential is briefly summarized.1

Accelerations due to gravitational potential in cartesian coordinates, ∂V/∂r, can be computed

from r, φ, and λ by the chain rule as in Vallado (2001):

a =
∂V

∂r

(
∂r

∂r

)T
+
∂V

∂φ

(
∂φ

∂r

)T
+
∂V

∂λ

(
∂λ

∂r

)T
, (2.32)

1 An interesting analogy illustrating how gravity anomalies affect GRACE can be made to cycling. If two bicyclists
are traveling at the same speed, one in front of the other, and approach a valley, the first cyclist will begin to accelerate
downhill away from the second. Reaching the bottom, that cyclist will begin to head uphill and decelerate. Meanwhile,
the second cyclist has started down the hill, and closes the gap between the cyclists. When that second cyclist reaches
the bottom, she too will begin to decelerate as she climbs uphill. Eventually, both cyclists reach level ground, and
are the same distance apart, once again traveling at the same speed. If the cyclists can adequately determine the
rates at which these events occurred, they could then calculate things like the slope and depth of the valley.
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where

∂V

∂r
=
−µ⊕
r2

∞∑
l=2

l∑
m=0

(r⊕
r

)l
(l + 1)Pl,m(sinφ)[Clm cosmλ+ Slm sinmλ],

∂V

∂φ
=
µ⊕
r

∞∑
l=2

l∑
m=0

(r⊕
r

)l (
Pl,m+1(sinφ)Π

′
l,m −m tanφPl,m(sinφ)

)
[Clm cosmλ+ Slm sinmλ],

∂V

∂λ
=
µ⊕
r

∞∑
l=2

l∑
m=0

(r⊕
r

)l
mPl,m(sinφ)[Slm cosmλ− Clm sinmλ], (2.33)

where

Π
′
lm =

√
(n+m+ 1)(n−m)(2− δ0m)

2
.

Derivatives of the position vector are determined directly, as

∂r

∂r
=

rT

r
,

∂φ

∂r
=

1√
r2I + r2J

(
−rT rK

r2
+
∂rK
∂r

)
,

∂λ

∂r
=

1

r2I + r2J

(
rJ
∂rJ
∂r
− rJ

∂rI
∂r

)
.

The term for ∂φ/∂r has a singularity at the poles. A scale factor Π
′
l,m+1/Πl,m is added

to the Pl,m+1(sinφ) term in the ∂V/∂φ partial derivative, to cancel out the spherical harmonic

normalization factors (Jones, 2010).

Finally, solving for the acceleration terms gives

aI =

1

r

∂V

∂r
− rK

r2
√
r2I + r2J

∂V

∂φ

 rI −
(

1

r2I + r2J

∂V

∂λ

)
rJ

aJ =

1

r

∂V

∂r
− rK

r2
√
r2I + r2J

∂V

∂φ

 rJ +

(
1

r2I + r2J

∂V

∂λ

)
rI

aK =
1

r

∂V

∂r
rK +

√
r2I + r2J

r2
∂V

∂φ
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2.3 Earth’s shape and the geoid

While Earth is often discussed as a spherical planet, this is actually not a good approximation

of the Earth. Even when not considering many of the small variations in the Earth surface or in

Earth gravity, Earth’s mean equatorial radius (6378.137 km) is more than 20 km larger than its

polar radius (6356.751 km). Due to Earth’s rotation and viscous composition, the permanent shape

of the Earth is deformed by a so-called “equatorial bulge,” best approximated not as a sphere but

rather as an oblate spheroid, shown in Figure 2.2. An oblate spheroid is an ellipsoid defined by two

larger, equal radii a along two axes (x̂ and ŷ) and one smaller radius b along the third axis (ẑ) as

x2

a2
+
y2

a2
+
z2

b2
= 1. (2.34)

Figure 2.2: Side and top-down cross sections of an oblate spheroid, a special case of the ellipsoid.

The ẑ axis is the axis of rotation.

This shape can be defined by a mathematical term called “flattening” (f), which relates the

Earth’s mean equatorial radius a to its polar radius b by

f =
a− b
a

, f⊕ =
6378.137− 6356.751

6378.137
≈ 1

298.257
. (2.35)

As such, flattening is a measure of the Earth’s oblateness. There are many ellipsoids that could

be used to approximate Earth’s shape, depending on if it is desired to best match Earth’s ocean

surfaces, the surface over North America, and so on. The most widely used of these in satellite



www.manaraa.com

33

geodesy is called the WGS 84 reference ellipsoid, determined by the World Geodetic Survey as

the ellipsoid that best approximates the total mean sea surface. Another example ellipsoid is the

TOPEX/Poseidon Ellipsoid, which differs on the order of one meter from WGS 84 and was designed

to best approximate the oceans between ±66◦ latitude.

In gravimetry, an important surface called the “geoid” is defined as the surface globally

on which the vector direction of the force of gravity at any location on the surface is exactly

perpendicular to the surface. This surface is defined from the total potential of gravity, W , that

combined Earth’s gravitational potential and its rotational effects by

W (r, φ, λ) = V (r, φ, λ) +
1

2
ω2r2 cos2 φ. (2.36)

If Earth’s gravity field were perfectly spherical and earth had no rotation (as would be the case for

a stationary point mass or a uniform sphere), a geoid for such an Earth would also be a sphere. The

geoid is then the surface for which W (r, φ, λ) is constant. Figure 2.3 illustrates the geoid as it relates

to the surrounding topography and the reference ellipsoid. There are actually an infinite number of

geoid surfaces, expanding outward from the center of mass of the Earth, with each surface centered

about some reference radius or ellipsoid. The geoid surface is most often defined as heights relative

to an ellipsoid, such as WGS 84. In GRACE, the geoid surface is the equipotential surface best

approximated by the mean sea surface.

An expression for the geoid height in spherical harmonics can be expressed by determining

the disturbing potential T from the potential of gravity W in Equation 2.36 less the normal gravity

U defined by the reference ellipsoid. Both W and U account for the same rotational effects and

same degree 0 total mass, and can be defined by expressing the reference ellipsoid in terms of

spherical harmonics:

C lm,T (t) = C lm,W (t)− C lm,U , (2.37)

Slm,T (t) = Slm,W (t)− Slm,U . (2.38)

It is often the case that the reference ellipsoid is defined by only the lowest degree zonal harmonics
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Figure 2.3: Illustration of the geoid as it relates to the reference ellipsoid and the surrounding

topography. Elevation h is the height of the topography above or below the geoid surface and

perpendicular to that surface. The force due to gravity is along this height. Height H is the height

of the topography above the reference ellipsoid, called the orthometric height.

C20 and C40. In any case, the disturbing potential can be expressed then as

T (r, φ, λ, t) =
µ⊕
r

Nmax∑
l=2

(a⊕
r

)l l∑
m=0

P̃lm (sinφ)
[
C lm,T (t) cosmλ+ Slm,T (t) sinmλ

]
. (2.39)

A relationship between the disturbing potential T and the geoid undulation N (or the height of

the geoid above or below the reference ellipsoid) is given by Brun’s equation as

N =
T

γ
, (2.40)

where the normal gravity γ is defined by the mean gravitational acceleration as γ = µ⊕
r2

(Jekeli ,

2009).

Evaluating for a spherical Earth (r = a⊕), the geoid undulation can then be expressed

compactly (from here, dropping the T subscript in the spherical harmonics for neatness) as

N(φ, λ, t) = a⊕

Nmax∑
l=2

l∑
m=0

P̃lm (sinφ)
[
C lm(t) cosmλ+ Slm(t) sinmλ

]
. (2.41)

Figure 2.4 shows a map of geoid undulation heights from the EGM 96 model.

The time varying component of the geoid can then be defined as

∆N(φ, λ, t) = a⊕

Nmax∑
l=2

l∑
m=0

P̃lm (sinφ)
[
∆C lm(t) cosmλ+ ∆Slm(t) sinmλ

]
, (2.42)
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Figure 2.4: Map of geoid undulation heights from the Earth Gravitational Model 1996 (EGM

96) of Earth’s mean gravity field (From: Lemoine et al., 1998).

where ∆C lm(t) and ∆C lm(t) are defined by subtracting some mean coefficient field from the total

time-varying coefficients (e.g., ∆C lm(t) = C lm(t)− C lm).

2.4 Surface mass variations in terms of spherical harmonics

The GRACE community is concerned primarily with the time-variable components of the

gravity field. While understanding how these changes affect the geoid is important, it is often

also useful to relate these changes in terms of actual surface mass variations. These mass changes

can be computed by considering the surface mass density redistribution ρ(r, φ, λ) that cause these

time-dependent changes in gravity, following Wahr et al. (1998); Wahr (2009):∆Clm

∆Slm


surface

=
3

4πa⊕ρave(2l + 1)

∫
∆σ(φ, λ)P̃lm(sinφ)

cosmλ

sinmλ

 cosφ dφ dλ dr, (2.43)
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where ∆σ is the change in surface mass density (mass/area) and ρave is the average density of the

Earth (5517 kg/m3). It is not correct, however, to assume that the density anomaly is concentrated

as a thin layer of surface mass change. Changes in surface loading induce deformation within the

solid Earth, resulting in a density change within the Earth as well that makes up a non-negligible

portion of the resulting gravity anomaly. These solid Earth loading terms can be represented by

the load Love numbers kl by∆Clm

∆Slm


solid Earth

= kl

∆Clm

∆Slm


surface

(2.44)

and the total surface mass density change can then be represented in spherical harmonics by∆Clm

∆Slm


surface

=
3

4πa⊕ρave

1 + kl
(2l + 1)

∫
∆σ(φ, λ)P̃lm(sinφ)

cosmλ

sinmλ

 cosφ dφ dλ dr. (2.45)

Expanding ∆σ(φ, λ) as a sum of orthogonal Legendre Coefficients, a total expression for changes

in surface mass similar to the expression of geoid undulations is found(Wahr , 2009):

∆σ(φ, λ) =
a⊕ρave

3

Nmax∑
l=0

l∑
m=0

2l + 1

1 + kl
P̃lm(sinφ)

[
∆C lm cosmλ+ ∆Slm sinmλ

]
. (2.46)

Finally, it is often useful to represent the mass change from Equation 2.46 in terms of the

water gained or lost in the region. As discussed in the previous chapter, a majority of mass

change signals observed by GRACE are water-driven signals. Therefore, to represent surface mass

changes in a more meaningful term, a unit water equivalent height is often used rather than kg/m2,

where this height is a product of the mass change and the average density of water, ρH2O = 1000

kg/m3. For a given unit area dA, the water equivalent height in centimeters (or “cm w.e.”) can be

determined by

∆σ [cm w.e.] =
∆σ [kg/m2]

ρH2O [kg/m3]
× 100 cm

m
. (2.47)

Put together, surface mass variations in terms of water equivalent height are computed by

∆σ(φ, λ) [cm w.e.] =
100a⊕ρave

3ρH2O

Nmax∑
l=0

l∑
m=0

2l + 1

1 + kl
P̃lm(sinφ)

[
∆C lm cosmλ+ ∆Slm sinmλ

]
. (2.48)



www.manaraa.com

37

Estimates of surface mass variations in water equivalent height are then estimates of the depth

of water over a unit area of the equivalent amount of mass as the variations. In other words,

a change of “+10 cm w.e.” would imply an increase in mass equivalent to 10 cm of water over

that area. Figure 2.5 shows maps of geoid undulations and surface mass for April 2009 relative to

the 2004.0-2010.0 mean field from GRACE at increasing spatial resolutions as defined by Nmax. In

determining these grids, 300 km Gaussian smoothing has been applied to remove correlated striping

noise and glacial isostatic adjustment trends have been removed to show only water-driven signals.

The maps show that the spatial patterns of geoid undulations contain gentler spatial variations

than for surface mass changes, and also demonstrate the increased spatial resolution recovered

with higher maximum degree and order Nmax.

Having derived equations for the gravitational potential, geoid undulations, and surface mass

variations, it is important to point out that, for all of these formulations, the only information

needed to express each field are various constants and the same global set of normalized spherical

harmonic coefficients. Therefore, it can be said that this set of spherical harmonics, or Stokes

coefficients, fully describe all of these fields, and changes in gravitational potential, the geoid, or

surface mass can all be fully described by changes in these coefficients. In addition, a highly

optimized Matlab implementation of the geoid and surface mass equations has been included in

Appendix B for reference and future use.
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Figure 2.5: Maps of geoid undulations and surface mass changes at increasing Nmax spherical

harmonic expansions for April 2009 relative to the 2004.0-2010.0 mean from GRACE, with 300 km

gaussian smoothing applied and GIA removed according to A et al. (2013).
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2.5 The gravity field as a global set of mascons

In the previous section, surface mass variations were derived as a set of global spherical

harmonic coefficients, the form in which traditional GRACE Level 2 data products are distributed.

These Level 2 products are by definition unregularized, and various post-estimation techniques are

applied in studies utilizing these products, as discussed in the previous chapter. This dissertation

presents a new daily GRACE solution realized as a global set of regularized mass concentrations,

or mascons. Whereas a spherical harmonic representation of the gravity field is truncated at some

maximum degree and order Nmax, a mascon representation in effect is a pixelation of the gravity

field, with the chosen number of mascons similarly truncating the gravity field.

Here, the realization of the gravity field as a set of mascons is presented. Importantly, mas-

con solutions introduce the opportunity to use various regularization techniques to best capture

information in the correct mascon cells, separate from other nearby but distinct cells (either geo-

graphically, geologically, or otherwise different) (Luthcke et al., 2013; Watkins et al., 2015). Mascons

allow regularization to be spatially driven, whereas spherical harmonic regularization must be done

in the frequency domain, and therefore regularization strategies dealing with things like coastal

boundaries are more readily implemented in mascon space. The specific regularization strategy

employed in this dissertation will be discussed in the next chapter. For now, it is only important

to mention this as motivation for why mascons are used and not spherical harmonics. Similarly,

the specific set of mascon cells will also be detailed at that time. Figure 2.6 shows an example set

of mascon cells over the continental United States. As seen in the figure, each mascon represents

the average mass signal over the cumulative area covered by each cell.

This dissertation builds on the monthly mascon solution process at GSFC to estimate daily

mascons. This process utilizes a mascon formulation derived from Stokes coefficients, useful because

gravity field estimation utilities at GSFC were originally defined in terms of these coefficients. The

full derivation of the mascon formulation is found in Luthcke et al. (2013) and Sabaka et al. (2010),

and is summarized in this section.
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Figure 2.6: Example trend map of a set of mascon cells over the continental United States from

GSFC Monthly Mascons v02.4. Each cell is representative of the total mass over the area covered

by that cell. Figure from the GRACE Mascon Visualization Tool, Appendix A.

A global set of mascons is essentially a pixelation of the Earth into a set of discrete, equal

area cells. Each cell represents the total surface mass of that cell, and mass distribution is assumed

to be uniform within the cell. The mascon parameters are formulated by recognizing that a change

in the gravitational potential of a region caused by the addition of a small uniform layer of mass

at time t can be representing as a set of differential Stokes coefficients about a mean field. These

differential coefficients can be computed as (Chao et al., 1987)

∆C lm(t) =

(
1 + k

′
l

)
R2σ(t)

(2l + 1)M

∫
P̃lm(sinφ) cosmλ dΩ (2.49)

∆Slm(t) =

(
1 + k

′
l

)
R2σ(t)

(2l + 1)M

∫
P̃lm(sinφ) sinmλ dΩ, (2.50)

where k
′
l is the loading Love number of degree l, R is the Earth’s mean semi-major axis, σ(t) is the

mass of the uniform layer, M is the Earth’s mass, φ and λ are geographic latitude and longitude,

and Ω is the solid angle surface area of the mascon where σ(t) is applied (Ω = dr dφ dλ). The

uniform mass layer σ(t) (kg m−2) is expressed as the height H(t) (in cm) of a uniform column

of water totaling that mass by relating the density of water (1000 kg m−3) to that mass, giving

σ(t) = 10 H(t). The total mascon surface mass content is determined by accumulating the entire



www.manaraa.com

41

spherical harmonic expansion. This allows mass change estimates to be expressed as a change in

equivalent water thickness, useful in GRACE estimates as many of the dominant mass changes

observed are due to changes in terrestrial water storage and ice mass change.

In this dissertation, a global set of 41,168 1-arc-degree equal-area mascons are defined, fol-

lowing the GSFC monthly solution’s mascon definitions (Luthcke et al., 2013). These mascons are

defined from spherical harmonics to degree and order 60. An alternative formulation used in the

JPL GRACE Mascon solution system defines a global set of mascons as a set of spherical caps

(Watkins et al., 2015). This system, not employed in this dissertation, estimates mascons directly

from GRACE ranging measurements, and is functionally similar to the GSFC process. It should

also be noted that, regardless the method used in defining a set of mascons, mascons can be de-

fined as whatever size is deemed most appropriate. The JPL solution uses a 3-arc-degree definition

to match the theoretical resolution of GRACE at the equator while this dissertation utilizes a

1-arc-degree mascon grid to better conform to coastlines.

2.6 Least squares estimation

With many physical systems, it is often the case that the observables measured by the sys-

tems and the desired information from the system are not the same thing, but that the observations

are in some way related to the desired information. If the desired information, or state, is uniquely

dependent on the observation, that information can be determined directly from the observations.

However, for many systems the observations are both noisy and dependent on the desired infor-

mation and the state that could result in those observations is non-unique. For such systems, the

weighted least squares solution with a priori information can be used to determine a best estimate

of the state. This is developed here, following Tapley et al. (2004b).
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2.6.1 The least squares solution

The least squares solution addresses the problem where knowledge of an independent variable

X is desired, but the only available information to determine that state is a set of parameters Y

that are dependent on the state. In other words, the known information Y is a function of X by

some operation A as in

Y = AX. (2.51)

Given some X and knowing the relating operation A, it is straightforward to compute Y. However,

determining the state X from Y is often not so directly determinable.

In practical terms, the known dependent parameters are observations of the state, with some

error ε. In general least squares estimation, a reference model is often used as a starting state

guess, and state deviations are then estimated as a correction to that starting guess in estimating

the final true state. For well observed linear systems, this initial guess can have large errors

and the observations can be used to correct for these errors. In gravity estimation with GRACE

observations, however, such a system would be non-linear and linear least squares estimation would

break down. Instead, the system can be linearized by choosing a reference model state that is

close to the truth, and representing the true state as deviations from that reference state with a

first-order Taylor series expansion about the reference state. In such a setup, a state deviation

vector x(t) of size n and observation deviation vector y(t) of size m are defined as

x(t) = X(t)−X∗(t), y(t) = Y(t)−Y∗(t) (2.52)

where X(t) is the desired unknown state, X∗(t) is the reference starting model, Y(t) is the set of

observations, and Y∗(t) = G(X∗(t)) is set of expected observations as a function of the reference

state. The state deviations are then related to observation deviations, now defining A, called the

design matrix,

y(t) = G(x(t)) + ε = Ax(t) + ε, A =
∂G

∂X
. (2.53)

When a best estimate of the state is computed, any remaining observation deviations will be due

to the observation errors, ε.
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The least squares solution determines an estimate of the state that minimizes the sum of the

squares of the calculated observation residuals. To accomplish this, a term called the performance

index is minimized, as first proposed by Gauss in 1809: (Tapley et al., 2004b)

J(x) =
1

2
εT ε. (2.54)

Rearranging Equation 2.53 for ε and substituting into Equation 2.54, the performance index can

be expressed as

J(x) =
1

2
(y −Ax)T (y −Ax). (2.55)

This equation is a quadratic function of x, implying that the equation will have a unique minima

for

∂J

∂x
= 0, and δxT

∂2J

∂x2
δx > 0 (2.56)

for all δx 6= 0. This also implies that the symmetric matrix ∂2J/∂x2 is positive definite.

This first equation can then be determined by

∂J

∂x
= 0 = −1

2

∂(y −Ax)T (y −Ax)

∂x

0 = −1

2

[
(y −Ax)T

∂(y −Ax)

∂x
+ (y −Ax)T

∂(y −Ax)

∂x

]
0 = −(y −Ax)T

∂(y −Ax)

∂x

0 = −(y −Ax)TA

0 = −AT (y −Ax) (2.57)

The value of x that satisfies Equation 2.57 will be the best estimate, from here defined as x̂.

Rearranging this equation gives the normal equation,

(ATA)x̂ = ATy. (2.58)
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Computing the second partial derivative gives

∂2J

∂x2
=
∂
(
−AT (y −Ax)

)
∂x

= −AT (−A)

∂2J

∂x2
= ATA (2.59)

which is positive definite if A is full rank. This term, (ATA), is called the normal matrix and is

n× n symmetric, where n is the number of state parameters in x. If this term is positive definite,

the best estimate x̂ can be determined by

x̂ =
(
ATA

)−1
ATy. (2.60)

The best estimate of the observation errors can then be computed by

ε̂ = y −Ax̂. (2.61)

The total best estimate of the state then is the sum of the initial reference state and the best

estimate of the state deviation,

X̂ = X∗ + x̂. (2.62)

2.6.2 Weighted least squares

A major shortcoming of the solution to the least squares solution, Equation 2.60, is that the

observation data informing the solution is not weighted according to the accuracy of the obser-

vations. In other words, all information is considered equally, even if some information is more

accurate than other. To improve on this design, observation-based weights can be assigned each

term in Equation 2.53 as

y(t) = Ax(t) + ε; W, (2.63)

where W is an m ×m symmetric matrix. If all observations are independent of one another, W

will be a diagonal matrix, where the terms along the diagonal are the relative weights of each

observation. A simple example of how this weighting matrix might look would be for a system
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with four observations, where the 4th observation is half as accurate as the first three. For such a

system, the weighting matrix might be

W =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0.25


.

The weighted least squares solution is then developed similarly to the standard solution,

beginning with the performance index:

J(x) =
1

2
εTWε. (2.64)

As before, this can be expressed as

J(x) =
1

2
(y −Ax)TW(y −Ax). (2.65)

Computing the first partial derivative and asserting that the first derivative vanishes at a

minimum of J(x),

∂J

∂x
= 0 = −ATW(y −Ax). (2.66)

The weighted normal equation is then expressed as

(ATWA)x̂ = ATWy (2.67)

and if ATWA is positive definite, the weighted least squares solution is then

x̂ =
(
ATWA

)−1
ATWy. (2.68)

This can also be expressed as

x̂ = PATWy, (2.69)

where P is an n× n symmetric matrix called the variance-covariance matrix,

P =
(
ATWA

)−1
. (2.70)
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This matrix will be full rank and invertible if all the parameters of x are observable, or uniquely

determinable from the observations y. If this matrix is not full rank, additional information can

be added a priori so as to regularize the solution and allow this matrix to be invertible.

2.6.3 Weighted least squares with a priori information

Least squares regularization adds a priori covariance (Pm, also called the regularization

matrix) and state deviation information (x) with errors η to the weighted least squares equation

by defining

Γ = W−1,

x̂ =
(
ATΓ−1A

)−1
ATΓ−1y

and

A∗ =

A
I

 , y∗ =

y,
x



ε =

ε
η

 , Γ∗ =

[Γm×m [0]m×n

[0]n×m Pm
−1
n×n

 ,
x̂ =

(
A∗TΓ∗−1A∗

)−1
A∗TΓ∗−1y∗,

which is expressed succinctly as

x̂ =
(
ATWA + Pm

)−1 (
ATWy + Pmx

)
. (2.71)

If the a priori state deviation x = [0], this expression simplifies to

x̂ =
(
ATWA + λPm

)−1
ATWy, (2.72)

where a scalar term λ has been introduced as an adjustable scaling parameter on Pm, which will

be helpful later in the mascon estimation design.

The regularization matrix allows constraints to be placed on the least squares estimate, en-

suring the front half of the least squares solution is invertible and that a meaningful solution is
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determined. By including regularization in the least squares estimate, we create a system that

draws the solution away from overfitting observations to an a priori state. This matrix can take

many forms, from a simple identity matrix, to a diagonal matrix with unique variance terms for

each desired state component, to a full matrix with unique variance terms and off-diagonal co-

variance information. Hoerl and Kennard (1970) discussed ridge regression (also called Tikhonov

regularization) as a method for solving ill-posed least squares problems by introducing diagonal

terms in the weighting matrix to obtain biased estimates with reduced total errors. If a priori

knowledge of the system includes information about the relative variabilities of state parameters,

this can be introduced into the diagonal terms. The inclusion of off-diagonal terms in the regu-

larization matrix allows for the inclusion of well known correlations between state parameters into

the estimate. This helps draw the estimate towards a biased state more reflective of the realities

of the physical system.

Finally, it is advantageous to define a final term R called the resolution operator, as in Luthcke

et al. (2013) and Loomis et al. (2019, under review). If Equation 2.63 is substituted into Equation

2.72 and neglecting observation noise (i.e., ε = 0) but defining W as before, the weighted least

squares with a priori information equation can be expressed as

x̂ =
(
ATWA + Pm

)−1
ATWAx, (2.73)

or

x̂ = Rx, (2.74)

R =
(
ATWA + Pm

)−1
ATWA. (2.75)

The resolution operator is n×n and describes how the true state x is resolved as the estimated state

x̂ by the weighted least squares with a priori information system, and is thus a measure of the effects

of state observability, relative weighting, and regularization on the estimate. Each column i of the

operator expresses the effects of regularization on each state parameter xi. If the regularization

matrix is full rank, the resolution operator will also be full rank. Without regularization, the

resolution operator would be an identity matrix if ATWA is full rank.
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The resolution operator has a number of applications, all relating to bias introduced into

the best estimate of the state. This bias can be related as the difference between the truth and

estimate,

l = x− x̂ (2.76)

or, substituting for x̂ using Equation 2.74,

l = (I −R)x. (2.77)

This resulting bias matches that derived by Hoerl and Kennard (1970) when discussing ridge

regression.

An impulse response can be defined by creating an impulse where one state parameter of x is 1

and all other parameters are 0, and then computing x̂ = Rx. The resulting impulse response vector

represents the regularized best estimate of the truth impulse given the developed regularization,

and can be examined for expected correlations between estimated state parameters. By extension,

a multi-state impulse response can also be computed. For example, a mascon impulse response

could be computed for a single mascon or a larger basin of mascons.
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Daily Solution Design and Development

In this dissertation, a new daily mascon solution is developed from GRACE Level-1B obser-

vations, building on the GSFC monthly Global Mascon Solution. The monthly GSFC solution is a

set of 41,168 discrete, 1-arc-degree,1 equal-area rectangular cells, resulting in bands of mascon cells

at every latitude, ranging from 360 mascon cells at the equator to six mascon cells at ±89◦ latitude

and one at each pole. Each cell represents a distinct portion of the Earth’s surface, and the set

as a whole achieves full global coverage. The daily solution developed here uses the same mascon

definitions as the monthly solution, a design choice that was made to maximize uniformity between

the two solutions. The daily solution design is then driven by different observability constraints

and resulting regularization needs. This chapter covers the estimation of this daily solution via

least squares as developed in the previous chapter, including the definitions and design of all terms

in the weighted least squares with a priori information equation (Eqn. 2.72). The largest focus of

this design is the development of a proper regularization scheme for daily estimates.

In GRACE gravity field estimation, observations comprised of K-band range-rate and GPS

positioning are used to estimate a state consisting of the time-variable garavity field as well as a set

of orbital arc parameters, while star tracker satellite orientation and accelerometer external force

measurements are used to orient and correct these observations. In turn, the observation deviation

vector is computed as the difference between measured and expected measurements given GRACE

orbital information and a background gravity field model. This background gravity field for the

1 A “1-arc-degree” mascon is approximately 111 km on each side.
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GSFC monthly solution consists of a static field, an atmosphere and ocean de-aliasing (AOD)

model, an ocean tidal model, solid earth and pole tide models, and a glacial isostatic adjustment

(GIA) model. Recalling Equation 2.52,

x(t) = X(t)−X∗(t),

the state deviation vector is computed as the best estimate of deviations between the true gravity

field X(t) and the background reference field X∗(t) represented in terms of water equivalent thick-

ness over a discrete set of mascon cells covering the surface of the earth, as well as the converged

arc parameter deviations (Luthcke et al., 2013). The daily product developed in this dissertation

uses the same background model as the GSFC monthly solution, but also includes the converged

monthly GSFC estimate as a time-variable component over each month. These monthly solutions

were included as step functions over each month, as the monthly estimates represent the total

average solution over each month. These models are summarized in Table 3.1. As a result, the

signal content of the observation deviation vector, y(t) = Y(t) − G(X∗(t)), is due to residual

sub-monthly variations in the gravity field that are aliased into each monthly period during the

monthly solution estimation. The state deviation vector then contains these sub-monthly variations

at each mascon cell, and the goal of this research is to build a system which recovers these state

deviations. As a result, this estimate is designed as a hierarchical product in which high-spatial

and low-temporal resolution monthly solutions are coupled with lower-spatial and higher-temporal

resolution daily estimates to maximize both the spatial and temporal information contained within

the final estimate.

Figure 3.1 shows an example of recovered daily signal for a single basin in the first half of

2012. The recovered signal in this estimate will be considered later in Chapter 5, and this figure

is included here to illustrate the daily solution as an estimated delta to the monthly solution.

Note that 5-day boxcar smoothing has been applied to the final solution simply to highlight the

magnitude and evolution of the recovered daily signal. Additionally, a data gap from mid-April

through May due to a lack of useful GRACE observations during this time can be seen. Because
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the monthly solution is included in the reference model for the least squares system, GRACE data

gaps will have no additional impacts on the developed daily solutions beyond general processing

difficulties already experienced with monthly GRACE solutions.

Table 3.1: Summary of reference forward model components for daily mascon estimation

Force Model Description

Static Gravity Field GOCO-05S with epoch of 2008.0
Tide Model GOT4.7 (90× 90) (Ray , 1999)
AOD ECMWF+MOD2D (Carrère and Lyard , 2003)
Geocenter Correction Swenson et al. (2008)
C20 Replace C20 with estimate from Cheng et al. (2013)
C21/S21 Pole Tide Wahr et al. (2015)
Monthly Gravity Field GSFC Global Mascons (Luthcke et al., 2013)
GIA A et al. (2013)

2012 2012.1 2012.2 2012.3 2012.4 2012.5
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Figure 3.1: Daily solution recovery for an example basin, where the total daily signal is the sum

of the forward-modeled monthly GSFC solution and the estimated daily deviations.
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3.1 Mascon estimation with a least squares approach

This dissertation uses the weighted least squares with a priori solution to estimate the global

set of mascons at each day. Recalling Equation 2.72,

x̂ =
(
ATWA + λPm

)−1
ATWy,

each term of the least squares solution must be properly defined and a regularization strategy must

be developed to ensure a stable and meaningful solution. The state deviation vector x̂ consists of the

desired mascon states each day, which will be estimated from the GRACE observation deviations y

mentioned above. An observation weighting matrix W is used of the same form as in the monthly

GSFC product. This weighting matrix accounts for uncertainties η due to measurement noise. This

leaves the design matrix A and regularization matrix Pm to be defined in the next two sections.

Before continuing, given that this new solution is resolved on the same set of mascons as the

monthly GSFC solution and uses that monthly solution in the reference state model, an important

point is that the final estimated state is in effect an iteration of the GSFC monthly solution at

daily timescales. Daily estimates are deviations from the GSFC monthly solution, and the total

daily signal is then the linear combination of these daily estimates with the monthly solution:

X̂(t) = X∗(t) + x̂(t). (3.1)

3.2 The design matrix, A

The first important component of the least squares equation to determine is A, the design

matrix. Recalling Equation 2.53,

y(t) = G(x(t)) + ε = Ax(t) + ε, A =
∂G

∂X
.

In other words, A contains the partial derivatives of the observations in the system with respect

to the desired state, or the information needed to map GRACE observations as mascon mass

estimates. Therefore, an expression is needed for these partial derivatives. This section follows
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Sabaka et al. (2010) and Luthcke et al. (2013) in defining these mascon parameters from differential

Stokes coefficients.

The mascon state deviations are related to GRACE observation deviations by defining the

design matrix as

A =
∂G(X∗)

∂X
≡ HL, H =

∂G(X∗)

∂V
, L =

∂V

∂X
, (3.2)

where V is the set of differential Stokes coefficients Clm and Slm to maximum degree and order

Nmax. This relates the mascon state to GRACE observations through H, the partial derivatives

of GRACE KBRR observations each day with respect to the differential Stokes coefficients, and

L, the partial derivatives of the differential Stokes coefficients with respect to the mascon state

parameters.

An alternative way to express the relationship in Equation 3.2 is for a single mascon surface

mass estimate Hj and single observation Oi by

∂Oi
∂Hj(t)

=

lmax∑
l=1

l∑
m=0

∂Oi

∂C lm

∂∆C
j
lm(t)

∂Hj(t)
+

∂Oi

∂Slm

∂∆S
j
lm(t)

∂Hj(t)
. (3.3)

This formulation shows the total accumulation of the mascon over all l and m through each Stokes

coefficient. Regardless of form, this developed relationship is advantageous because it allows already

developed software for determining the gravity field from GRACE as a set of differential Stokes

coefficients to be useful in determining a mascon solution.

Like in the monthly mascons, this work leverages the GEODYN Orbital and Geodetic Pa-

rameter Estimation program to compute partial derivative terms of GRACE KBRR observations

each day with respect to the differential Stokes coefficients as part of the KBRR reduction and

Level-1 data processing. These partial derivatives are accumulated into H from above, which is

size Nobs × k.2

2 where k is the number of stokes coefficients computed in the GEODYN setup. For Nmax = 60, there are 3691
total Clm and Slm coefficients.
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L is then determined from Equation 2.49, where the mascon surface mass variations were

related to the set of Stokes coefficients by integrating over the mascon area for

∆C lm(t) =

(
1 + k

′
l

)
R2σ(t)

(2l + 1)M

∫
P lm(sinφ) cosmλ dΩ

∆Slm(t) =

(
1 + k

′
l

)
R2σ(t)

(2l + 1)M

∫
P lm(sinφ) sinmλ dΩ.

Partial derivatives for each differential Stokes coefficient with respect to each mascon j are then

determined by

∂C lm
∂σj

=

(
1 + k

′
l

)
R2

(2l + 1)M

∫
P lm(sinφ) cosmλ dΩ, (3.4)

∂Slm
∂σj

=

(
1 + k

′
l

)
R2

(2l + 1)M

∫
P lm(sinφ) sinmλ dΩ, (3.5)

which are accumulated into L (size k × 41, 168). Computationally, it is helpful to note that these

terms are time-invariant, meaning that they can be pre-computed and stored for more efficient

mascon estimation.

3.3 Design of the mascon regularization matrix, Pm

GRACE Level-1B data processing provides observation measurements every five seconds, or

17,280 observations per day. Spatially, these observations are spaced over approximately 15 polar

orbits each day, and the nearest orbital pass for a mascon on any given day can range from directly

above that mascon to more than 1,400 km away, shown in Figure 3.2. Depending on any given

day’s orbital geometry, certain mascons will be more or less well observed. Together, this poses

a major observability problem: given the number of mascons in the estimated state and the low

number of observations and poor coverage of some places by these observations, the matrix ATWA

will not be full rank and the system will not be able to meaningfully resolve a gravity field solution

using the observation information alone.
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Figure 3.2: (Top) The distance of closest approach for each mascon relative to the GRACE orbit

for an example day. (Bottom) 1-day coverage is compared to 30-day coverage over North America

from GRACE.
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In the monthly GSFC mascon solution, a priori covariance information is used to regularize

the least squares solution and drive solution convergence. A major reason this is required is the

geometry of observation data from GRACE. The mission’s polar orbit provides excellent along-

track coverage with many successive observations in this direction along a single track, helping

isolate signals well across latitudes. On the other hand, GRACE shows relatively poor cross-track

resolution, where signals can only be isolated in longitude by successive nearby orbital paths often

separated by many days, especially at lower latitudes. In unregularized GRACE Level-2 spherical

harmonic products, this leads to vertical striping in the recovered gravity field, which is then

corrected for using various destriping algorithms (e.g., Swenson and Wahr , 2006). Regularization

allows these effects to be handled as part of the Level-1B processing, rather than as a post-processing

technique.

A daily solution has even greater need for regularization to overcome these additional ob-

servability issues. This section discusses the design of the regularization matrix Pm developed in

this dissertation to enable meaningful estimations of daily solutions and discusses that design’s

relationship to the monthly GSFC solution regularization scheme. The final regularization design

is a combination of multiple strategies each aimed at addressing specific observability issues. As

discussed in Section 2.6.3, a simple diagonal matrix (even an identity) could be used to constrain the

solution. However, the following sections present a full a priori variance-covariance constraint that

makes use of cross-mascon correlations and unique state component weighting to better regularize

the least squares solution and form a more well-posed system.

3.3.1 Cross-mascon correlations

A significant challenge in estimating a daily set of 41,168 mascons is a relative lack of ob-

servations on daily timescales. With fewer observations than unknowns, daily estimates must both

overcome geometric observability problems and a problem of sparse information. To that effect,

one strategy to improve observability is to effectively reduce the set of uniquely determined mascon

state parameters by introducing correlations between mascons.
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Sabaka et al. (2010) showed that exponentially decaying spatial and temporal constraints

could be used for isolating a GRACE-recovered signal to the appropriate mascon cells in conjunction

with regional constraints isolating mascons in a cryospheric region of interest from outside mascons.

A combined regional and spatiotemporal constraint was defined between two mascons i and j in

regions Ri and Rj as

Wkk =


exp

(
2− dij

D −
tij
T

)
, Ri = Rj

0, Ri 6= Rj

, (3.6)

where dij is the distance between the two mascons, tij is the time between observations, and D

and T are scale factors. Therefore, mascons in similar regions were tied together spatially and

temporally, and mascons from non-similar regions were not tied together, as depicted in Figure 3.3.

(Sabaka et al., 2010). The driving principle behind this regularization is the requirement that all

distinct mascon differences be close to zero in a statistical sense. These constraints were shown to

Figure 3.3: Each mascon is spatially correlated with similar mascons by an exponential function

in Equation 3.7. This figure shows the correlations for the San Francisco mascon with surrounding

mascons. Notice that mascons west of San Francisco (those in the Pacific Ocean) are not correlated

with those over land, reducing leakage of recovered TWS signals into the oceans.
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effectively ensure that mass loss signals were observed in those locations where such mass changes

would be expected to occur (such as over land for glacial ice loss, and not over the oceans). These

principles have enabled the development of the GSFC monthly GRACE mascon solution, using 11

regional boundaries including separate high and low elevation Greenland regions, Antarctica, the

Gulf of Alaska glaciers, land, open ocean, and certain inland seas, though temporal constraints are

no longer included in that solution.

In the daily solution developed in this dissertation, spatial constraints imposing cross-mascon

correlations are employed. As a primary goal of this dissertation is to design a daily GRACE

solution where each day is resolved independently of other days and quantify the effectiveness of

such a solution, this solution also eliminates the temporal constraints from Equation 3.6, and defines

spatial-only constraints as

Wkk =


exp

(
1− dij

D

)
, Ri = Rj

0, Ri 6= Rj

, (3.7)

where D = 100 km.

A significant difference between this daily spatial constraint implementation and the monthly

implementation is in the design and number of regions, as lower spatial sampling necessitated that

smaller regions be handled differently, as discussed below. In the developed daily solution, only

four regions are defined: Greenland, Antarctica, Land, and Ocean. Whereas the monthly solution

separates high elevation interior Greenland from low elevation coastal Greenland, the daily solution

combines these as a single region. A major motivation for the original separation was to help isolate

Greenland ice mass loss in lower coastal areas where long term ice mass loss is known to be taking

place, but with the daily solution, these long-period changes are already determined by the monthly

estimate, and improved observability by resolving the whole of Greenland as one region makes sense.

Similarly, whereas the monthly solution separates the glacial portions of the Gulf of Alaska from

the rest of the North American continent to help spatially isolate ice mass loss in the area, the daily

solution combines the Gulf of Alaska region into the general Land region to improve sub-monthly

observability. Land and Ocean then constitute the remaining two regions, which helps to isolate
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TWS signals over land and eliminate leakage of these signals into the oceans.

Land and ocean regional definitions in the daily solution also differ slightly from the monthly

solution. Certain small, relatively remote land masses were found to not be observable for many

days, and too small for spatial correlations to properly tie these masses to better-observed land

mascons nearby. As a result, mascons in Iceland, New Zealand, and the Arctic islands of Svalbard

and Novaya Zemlya were redefined as ocean mascons and constrained accordingly. Without this

change, the recovered mass signals in these basins were overwhelmingly dominated by noise, even

in more-heavily constrained solutions with high λ values. Figure 3.4 shows examples of poorly

recovered signals in Iceland and New Zealand, where the distance to GRACE’s closest approach on

any given day can vary by over 1000 km.

Figure 3.4: Small, isolated land masses such as New Zealand and Iceland are especially difficult to

accurately estimate on daily timescales with GRACE due to very large fluctuations in the distance

of the land mass to GRACE’s nearest pass each day.

3.3.2 Mascon-dependent weighting

In addition to cross-mascon spatial constraints, a regularization matrix can be designed that

constrains each mascon more or less based on any number of considerations. While an identity

matrix can effectively constraint a least squares solution by applying a properly determined scal-

ing factor to the identity, including unique weights for each state component can allow a better

resolved estimate, as discussed in Section 2.6.3. Mascon solutions developed at JPL and CSR
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have shown that mascon weighting based on some map of expected signal strength can improve

the determinability of a mascon solution (Watkins et al., 2015; Save et al., 2016). JPL informs a

priori covariance information from model outputs of TWS, more or less heavily constraining each

mascon based on the expected signal recovery in those mascons according to the model. CSR

uses a similar approach but bases these constraints on GRACE information itself. The GSFC

monthly solution takes a different approach, primarily relying on their spatial constraints as a

statistically-driven constraint model. However, they do introduce mascon-dependent weights in a

few related ways through an iterative process. First, an initial iteration helps isolate the majority

of time-variable gravity signals over land by applying lower constraints over land than over ocean,

and then by binning range-acceleration residuals over mascons to build each additional iteration’s

mascon-dependent weighting scheme (Loomis et al., 2019, under review). Additionally, the GSFC

applies a latitude-dependent weight to all iterations, where better-observed high-latitude mascons

are less constrained by spatial correlations. All these various constraining techniques demonstrate

a characteristic of mascon solutions less easily seen in spherical harmonic solutions: the ability

to drive the recovery of daily surface mass fluctuations with location-specific statistical constraint

methods.

To best resolve model-independent daily estimates of TWS globally, this dissertation ul-

timately employs a mascon-dependent weighting strategy similar to that in the GSFC monthly

solution. The two major components of this strategy are: 1) increase open ocean constraints by

a factor of 10000 and inland sea constraints by a factor of 1000 as compared to land constraints,

and 2) utilize latitude-dependent constraints that reflect better observability at higher latitudes.

The first reflects that this solution is designed to recover terrestrial water storage signals rather

than ocean signals, while the second allows better observed locations to more readily adjust to the

GRACE observations. This latitudinal weighting was developed from GRACE error analysis by

Wahr et al. (2006), which determined that GRACE signal recovery is best at higher latitudes, due

to higher observation counts and better orbital geometry, and worst at latitudes just north and

south of the equator, where orbit crossovers reduce the total spatial coverage of the GRACE orbit.
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Figure 3.5: (Top-Left) Latitude-dependent weighting for each mascon, reflecting mascon observ-

ability due to orbit geometry. (Top-Right) Land-Ocean weighting constraining ocean mascons by

a factor of 1000 more than land mascons. (Bottom) Combined effect of both weighting strategies.

This design therefore allows higher latitude mascons to vary more independently of spatial corre-

lation constraints than lower latitude mascons. A map showing these combined effects is shown in

Figure 3.5.

Changes to ocean mascons are in effect heavily constrained and strongly correlated across

very large spatial scales, and therefore daily ocean signals are significantly dampened. This design

choice was made largely due to the focus of this work on developing daily terrestrial water storage
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estimates for hydrologic applications, allowing efforts to be concentrated on evaluating and best

recovering these signals. Ocean mascons are not held fixed, but rather are highly constrained so

as to significantly diminish spatial signal recovery over these mascons. This is not to say that

ocean mass does not change on daily timescales, but rather assumes that these changes are 1) in

part already captured by the ocean de-aliasing product in the reference forward model (see Table

3.1), and 2) that errors in the de-aliasing product are small enough that residual ocean signals are

significantly smaller than residual land signals. In practical terms, this means that while all 41,168

mascons are included in the global solution, approximately 14,000 land and glacial mascons make

up the predominant portion of the estimated daily fields, improving overall system observability.

An additional resulting effect of this combined constraint is that daily signals over those small

land masses that were redefined as ocean mascons are not meaningfully recovered in the developed

solution.

3.3.3 Determination of global weighting factor, λ

When defining the weighted least squares with a priori solution, a scaling factor term λ

was added. This factor is a relative weighting factor between the observation component and

the a priori component of the estimation system, where larger values of λ more heavily weight the

regularization constraint and smaller values more heavily weight daily observations. This parameter

must therefore be tuned to meet some desired criteria in the resulting estimated state.

In addition to reducing leakage between regions, a primary motivation for developing a regu-

larized solution is the reduction of striping and other correlated errors present in GRACE Level-2

spherical harmonic solutions. Rather than requiring signal post-processing to remove these corre-

lated errors, a properly designed regularization strategy will account for these errors in the Level-1B

processing and estimation step. Daily solutions are especially subject to these types of errors, as

two adjacent orbital tracks may be separated by 1500 km or more, and poorly observed mascons

between these tracks can be especially subject to correlated errors in a poorly regularized solution.

Figure 3.6 shows two consecutive estimated days where poor solution regularization results in a
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Figure 3.6: Example daily solution resulting from a poorly regularized least squares solution for

two consecutive days. Daily orbit observations are depicted in gray, highlighting the low spatial

sampling in the observations. Non-physical vertical striping and correlated errors dominate the

recovered estimate.
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mascon estimate dominated by vertical striping and correlated errors. Comparisons between days

shows that these errors are also time varying, reinforcing the non-physicality of the signals.

To drive the solution toward a meaningful estimate for daily TWS changes, the design criteria

for the λ parameter in the estimation is the removal of large vertical striping in the solution with

the smallest possible weight λ so that the estimate can be informed by the daily observations over

the regularization matrix Pm as much as possible. This criteria ensures maximum signal recovery

spatially given the general regularization matrix design. To determine this weight, an initial λ

of 10−6 was established and this value was iterated with increasingly larger values. A λ value of

2× 10−4 was determined to be the minimum value where vertical striping is eliminated. Figure 3.7

shows the recovered mass signal from estimates for a sample of tested λ values for the same day.

3.3.4 Alternative regularization strategies considered

At this point, it is also appropriate to note that other mascon-dependent weighting schemes

were investigated during the course of this dissertation and found to not meaningfully improve

signal recovery while also adding additional challenges to quantifying errors due to these schemes.

One such design imposed mascon-dependent weights based on the RMS of the de-trended monthly

GSFC solution, as in Figure 3.8. Similarly, weighting based on the RMS of the de-trended solution

with seasonal signals removed was also considered, which would reflect the shorter-term variations

in the GRACE data. Both designs follow the general idea behind model- or GRACE-driven mascon

regularization constraints in monthly products from JPL and CSR, though both RMS models are

simplifications of those centers’ implementations. These models did not show meaningfully different

signal recovery, as shown in Figure 3.9, and ultimately were abandoned so as to not bias recovered

daily signals with non-daily spatial information. A key concern with any such models is that

the spatial patterns enforced by these constraint models would force the signal recovery in the

daily solutions to match patterns that may or may not accurately reflect daily signal distribution,

and there is low confidence that any such parameterization would perfectly represent daily spatial

distributions of TWS. Further, a primary goal of the daily solution developed here is to be GRACE
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a) b)

c)

d) e)

Figure 3.7: Estimated mascon solution for a single day with increasing regularization weighting

factors: a) λ = 2×10−6, b) λ = 2×10−5, c) λ = 2×10−4, d) λ = 2×10−3, e) λ = 2×10−2. A weight

of 2×10−4 was found to be the smallest weight where large vertical striping errors were eliminated.

For larger values of λ, over-regularization quickly becomes a problem, and the ability of the solution

to resolve any signals spatially quickly diminishes given the other constraint parameters.
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data-driven alone, and any added information along these lines would move the developed solution

away from this goal.

Figure 3.8: Mascon-dependent weighting based on various models, such as the RMS of the

de-trended monthly GRACE solution shown here, did not measurably improve signal recovery.
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Figure 3.9: Comparison of selected “Standard Constraint” and alternative “RMS-based Con-

straint” schemes for two examples basins in North America (left) and Central Africa (right). Little

difference was seen between two techniques, even in areas most affected by the RMS-based regu-

larization scheme such as the Lake Chad basin on the edge of the Sahara Desert.
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Additionally, other system designs were considered but ultimately not chosen. An initial pro-

posal for a daily Kalman-filtered solution using each day’s estimation as the basis for the next day’s

estimate was ultimately not pursued because such a solution would not be a true daily estimate,

and would instead have potentially ambiguous temporal correlations. Two types of “swath” con-

straints were considered before being abandoned because it became impossible to objectively define

the spatial structure of these swaths. One such design included a parameter where all mascons

within an N kilometer swath of the GRACE orbit on a given day were fully estimated and those

outside this range were help fixed, illustrated in Figure 3.10 a) for a 575 km swath. The other

considered design computed variably weighted constraints for each mascon based on the proximity

of that mascon to the nearest orbital pass, illustrated in Figure 3.10 b). Mascons farthest from the

GRACE orbit each day would be allowed to vary least, while those closest were allowed to vary

most. Both swath systems were eventually rejected because both insufficiently addressed a major

question related to GRACE observability: given that along-track resolution far exceeds cross-track

resolution, how can a swath of any type be defined that restricts the signal recovery cross-track in a

rigorous way? In other words, if GRACE cannot tell the difference between a small signal directly

below the satellites and a larger signal away from the track of the satellites, a swath design will

likely artificially place signals in spatially constrained areas where they may not actually originate

due to the imposed constraints of such a system. Instead, by solving for a global set of mascons

each day without these swath constraints, this dissertation relies on spatial information given by the

observations and regularization constraints to effectively determine the resolution of each recovered

mascon, which will be discussed in Chapter 5.
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Figure 3.10: (Top) A daily “swath”, or extension of the GRACE groundtrack for a given

day, defines constraints allowing only those mascons within a certain cross-track distance of the

groundtrack to be adjusted on a given day. Here a 575 km swath is depicted, showing mascons

in white that are contained within the estimated daily swath and mascons in red that are not

estimated on that day. (Bottom) An example variably weighted swath constraint defined from

the square of the distance between each mascon and its nearest orbital approach, where the best

observed mascons are constrained by a factor of ten less than the worst observed mascons.
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3.4 Summary

Chapter 3 describes the daily mascon solution realization developed in this dissertation as

an extension of the GSFC monthly mascon solution. Theory presented in Chapter 2 is developed

in terms of mascon estimation, and the many parts of the least squares solution are defined. Back-

ground models informing the least squares reference state and GRACE observational information

are presented. The focus of the chapter is on design considerations and decisions relating to proper

regularization of the solution. The developed solution uses similar style constraints as the GSFC

monthly product, adding a certain degree of consistency to the solution, but key differences in the

implementation of these constraints are detailed to allow for the solution to recovery meaningful

TWS signals. Finally, certain regularization strategies that were considered but ultimately not

included in the final solution design are presented, and the rejection of these design strategies was

discussed. In Chapter 4, the presented solution design is investigated via a simulation study to

characterize expected signal recovery in the solution. Chapter 5 then analyzes the actual daily

solution in depth, in the context of this chapter and the simulation.
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Chapter 4

Testing performance with a simulation

Due to the unique character of GRACE observations, there is no “truth” dataset that is

directly comparable to our daily solutions. In the following section, we will make use of TWS

model output as an independent dataset for comparing with our final product. Before this analysis,

we have first devised a simulation in order to quantify the expected signal recovery of our daily

product, discussed here. These two comparisons are unique and complimentary assessments of our

daily product, as the simulation results in this section test solution performance against limited

known signals while the model comparison in the following section tests continental-scale signal

recovery performance against other imperfect estimates of TWS.

Our simulation used a specially designed set of box function signals placed in individual,

globally dispersed land mascons with 10-day periodic repeating patterns over a 30-day month

defined by

yi(t) = sgn

(
sin

(
(t− τi)π

5

))
(m water equivalent height), (4.1)

where τi is an integer number of days phase shift, unique to each individual mascons containing

a simulated signal, and the magnitude of the box function is the mass equivalent of one meter

of water over the surface of a single mascon, or about 12.38 Gigatonnes (depicted in Figure 4.1.

These functions were added to the reference forward model described in Chapter 3, amounting to a

known amount of mis-modeling of the background model. Individually, each simulated signal was

zero-mean over the 30-day period, while collectively the sum of all signals on any given day was

zero to ensure mass was conserved globally in the simulation.
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Figure 4.1: Example signal for simulation study from Equation 4.1 for τ = 3

.

After including these signals in the reference model, real GRACE observations from June

2004 were processed using the mascon least squares estimation system. As these signals represent

a known mis-modeling of the true state, the resulting estimated state should include a correction

to this mis-modeling. In order to separate real recovered sub-monthly signals observed by GRACE

from the simulated signal, a second distinct solution was estimated over the same period that

excluded the simulated signals from the reference forward model. The difference of these two

estimates then provides the estimated correction due to the simulated signal. The spatial extent

of these corrections was then analyzed to determine the recovery performance of the estimation

system.

4.1 Quantifying simulated signal recovery

The total recovered mass within specified radii of the mis-modeled mascon at seven locations

included in the simulation are given in Figure 4.2, along with a key for their location. These loca-

tions include low-, mid-, and high-latitude mascons across multiple continents, providing a useful

representation of mascon resolution globally. Mass is accumulated from the differenced correction

field described above as the total sum of all mascons within each specified radius. Accumulating

recovered mass within a 300 km radius, or approximately the spatial resolution of monthly GRACE

solutions, the daily fields show low signal recovery at all latitudes. As this radius is increased, the

simulated mass is more fully recovered at all locations. High latitude locations such as the East
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Figure 4.2: Simulated signal recovery at seven locations is presented. Recovered signals are

accumulated as the total signal within a given radial distance of the simulated signal center. High-

latitude locations (AIS, GIS, and Helsinki) show the best signal recovery and localization, while

mid-latitude locations (Mongolia, Wyoming, and Central Argentina show diminished recoverability,

and equatorial locations such as the Central Congo show poor recoverability.
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Antarctic Ice Shelf (EAIS), Helsinki, FI, and the Greenland Ice Shelf (GIS) show near total signal

recovery within a 600 km radius. If this radius is expanded farther, recovery performance is further

refined. Mid-latitude locations near 45◦ latitude such as Mongolia and Wyoming perform worse.

At these locations, the total recovered mass within a 900-1200 km radius is worse than for a 600 km

radius at high latitude locations. Near-equatorial locations such as the Central Congo show very

poor signal recovery even within large averaging radii, suggesting that poor daily coverage greatly

diminishes the ability of the system to estimate equatorial TWS.

An interesting example demonstrating the benefits of regional boundary constraints can be

seen in the Central Argentina mascon (approximately 30◦S), which shows similar recovery perfor-

mance to Mongolia and Wyoming despite being located closer to the equator. Due to the land/ocean

regularization constraint used in this study, leakage in mascons close to coastlines is reduced and

recovered signals are better localized. The portion of the South American continent containing this

Central Argentina mascon is a relatively narrow land basin as compared to continents containing

inland locations in Mongolia and Wyoming. The land/ocean boundary for this Central Argentina

mascon is only 10 mascons away in both the east and west directions, whereas the only nearby

coastal boundary for either the Mongolia or Wyoming mascons is the Pacific Coast boundary in

the Western US, 14 mascons to the west of the Wyoming mascon. This better-than-expected signal

recovery based solely on latitude in Central Argentina helps demonstrate the benefits of regional

constraints in helping localize signal and improve the resolution of the estimated solution.

It should be noted that multiple iterations of this simulation were investigated. In these

iterations, variables not presented in detail here were investigated, such as the temporal shapes of

the simulated signals and the effects of placing a signal directly on a coastline. To briefly summarize

the findings from those tests, signal shape was determined to have no effect on the signal recovery

for any given day, but did reinforce that short term signals may be entirely unrecoverable if the

day(s) in which those signals are present in TWS are not well observed by GRACE. Similarly, a

coastal location had the same effect as a signal in a narrower continent (such as Central Argentina)

but to a more pronounced degree due to regional constraints further helping to isolate signal. Both
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findings are natural extensions of the more detailed results shown, and therefore not considered at

length here.

4.2 Spatial recovery of the simulated signal

To better understand day-to-day variations in signal recovery, spatial maps of recovered sig-

nal are considered in Figures 4.3 and 4.4 for the East Antarctic Ice Sheet (EAIS) and Wyoming,

with orbit groundtracks shown. Daily observability varies with orbital geometry, explaining daily

variability in the recovered estimates in Figure 4.2. This effect is most noticeable for Wyoming,

while recovery in the EAIS shows little variability in spatial recovery, suggesting that orbital ob-

servability is less of a factor at high latitudes. This is expected, as the GRACE polar orbit provides

excellent coverage at high latitudes compared to low- and mid-latitudes.

To better understand leakage of the signal over Wyoming, the general spatial structure of

the signal was considered. Figure 4.5 shows a breakdown of the dominating spatial pattern in

daily signal recovery. The RMS of the magnitude of the recovered signal at every mascon in

North America was computed and is shown. These RMS values were then analyzed versus the

distance of each mascon to the simulated signal center. Signal falls off with distance in a manner

similar to the Gaussian smoothing function, a function often used to describe resolution of GRACE

spherical harmonic studies (Wahr et al., 1998). This function will be considered further in the

next chapter as part of an analysis of the real daily signals, and therefore is mentioned here only

as an interesting note. The figure also shows that the rate at which these values fall off with

distance is also dependent on the orientation of the mascons to the original signal. Mascons north

or south of the central point (those that share a similar longitude λ) show more a steeper decline

in leakage from the original signal, while mascons east or west of the point (along the said latitude,

φ) show larger leakage extent. This can be attributed to the unbalanced observability of GRACE

measurements, particularly on daily timescales. At mid latitudes, the GRACE orbit is oriented

roughly north-south, and a larger number of along-track observations are able to localize north-

south variations in the gravity field well. On the other hand, large gaps in observations east-west



www.manaraa.com

75

Figure 4.3: Spatial recovery of simulated signal over the East Antarctica. Total signal recovery

shows a clear dependence on orbit location (pink) for each day, explaining variability in total

recovery shown in Figure 4.2.
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Figure 4.4: Spatial recovery of simulated signal over Wyoming. Total signal recovery shows

a clear dependence on orbit location (pink) for each day, explaining variability in total recovery

shown in Figure 4.2.
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create a spatial ambiguity problem, where the recovered signal could be the result of smaller nearby

signals or larger signals to either side. As a result, the east-west spatial recoverability with daily

GRACE solutions underperforms north-south measurements, resulting in the patterns shown.

Figure 4.5: Leakage outward away from the simulated signal in Wyoming: The RMS of recovered

signal at every mascon is plotted against the distance of each mascon to the original signal (left)

and mapped spatially (top-right). This pattern falls off with the distance of each mascon to the

signal center (bottom-right).

4.3 Summary of key simulation findings

This chapter used a simulation study to test signal recovery in land locations spatially dis-

tributed around the globe using the developed daily mascon solution presented in this dissertation.

This study demonstrated that signal recoverability is dependent on latitude, where high latitude

locations that are better observed by GRACE show more complete and more localized signal re-
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covery.

Locations in Greenland and Antarctica, polar basins that are additionally constrained as

independent basins in the solution regularization, show the greatest ability to recover signal, while

other high latitude locations such as Helsinki, Finland show slightly degraded performance in

comparison. This can be attributed to leakage of the simulated signal away from Helsinki into

Europe and Asia due to the lack of a regional boundary in this area helping to isolate the recovered

signal spatially. Mid-latitude signals such as in Wyoming and Mongolia showed further degraded

performance, and their relative isolation from regional boundary constraints was shown to allow

significant signal leakage away from these locations. On the contrary, a signal in Argentina was

shown to be better localized despite a lower latitude, attributed to the relative proximity of both

the Pacific and Atlantic coastal boundaries in this narrower continent.

As a whole, the simulation provides a “rule of thumb” of sorts, that signal leakage in high

latitude locations is nearly entirely within 600 km, while at lower latitudes this leakage can extend

outward to 1000 km or more. With that in mind, it would be advantageous to develop a more

thorough measure of this leakage, which biases signal recovery. In the next section, which analyses

actual daily signals, a method for better determining signal resolution and recovery bias is presented

and applied in a model-based comparison of TWS. The rule of thumb developed in this section

will be considered in comparison to these results, and used to validate the developed analysis

technique.
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Analysis of developed daily solution

The simulation study presented in the previous section is informative because it helps to

establish expectations for daily solution performance. In this section, we analyze the actual daily

solution in light of results from the simulation. We present a global measure of leakage between

mascons in the daily solution, which we refer to as the solution bias. A basin-scale analysis is then

presented with comparisons to model estimates of TWS, so that daily solution performance can be

further quantified.

The total time-variable signal content of our developed solution is a combination of the high

spatial resolution and long-term information from the fully converged monthly GSFC solution in

our reference background model and lower spatial resolution daily information in our daily estimate.

A necessary but not sufficient condition of our estimate is therefore that the monthly average of

the total daily solution is approximately equal to the GSFC converged monthly solution, with any

variations from that due to the differing spatial scales of the two solution layers. Figure 5.1 compares

the monthly GSFC solution for April 2012 with the corresponding monthly-averaged daily solution

and shows strong agreement between the monthly resolutions of each solution. Differences between

the two fields are less than 5% of the total signal and due to the different spatial resolutions of the

daily and monthly solutions. Therefore, we can affirm that the estimated daily solution adds only

sub-monthly information to the converged monthly solution.

Daily signal content globally can be compared to the GSFC monthly solution by computing

the RMS of both solutions over a similar time period and comparing their the magnitude and shape.
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Figure 5.1: April 2012 solution content: GSFC converged solution (top-left), monthly-averaged

total daily estimates with monthly reference model restored (top-right), and monthly-averaged

daily estimates (bottom).

Figure 5.2 shows maps of the RMS of the daily and monthly signals for 2012 (269 days or 9 months).

This measure is useful because it gives an idea of the spatial variability of the two solutions. An

immediate comparison between the daily and monthly RMS maps shows that large-scale spatial

patterns are consistent between the two solutions, which should be expected because monthly mass

variability is driven by long-term effects of daily variability. The magnitudes of the monthly RMS

map are larger in magnitude than for the daily solution. However, this is to be expected, as monthly

changes in TWS are in fact accumulated daily changes. The maps show consistency in signal content

in hydrologically active regions such as the Amazon, sub-Saharan Africa, India and Southeast
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Figure 5.2: Maps of the RMS of the estimated daily solution as compared to the GSFC monthly

solution for 2012, showing strong similarities in large-scale spatial patterns and highlighting differ-

ences in spatial content scales.

Asia, and the Gulf of Alaska, as well as glacial regions such as Greenland and coastal Antarctica.

Differences between the two maps also highlight some of the more challenging aspects of designing a

daily product, where narrow or relatively isolated regions and lower latitude regions such as Central

America, the South Pacific islands, or Madagascar show larger-than-expected signal content in

the daily solution, indicating likely observability issues where some days are more observable than

others. Finally, the map very clearly shows the differences in spatial resolution that can be expected

between the daily and monthly solutions. With far fewer observations and only 15 evenly spaced

orbital tracks separated by approximately 24◦ in longitude, shorter-wavelength signals are simply

not as recoverable as with monthly observations.

The usefulness of daily solutions can in part be demonstrated by investigating mass estimates

at basin scales. We compute estimates for each basin i from the subset of N mascons in each basin,

mi(t) = [m1,m2, ...,mN ], by

Bi(mi(t)) =

∑N
j=1 aj mj(t)∑N

j=1 aj
, (5.1)

where aj is the area of the jth mascon. Figure 5.3 shows the total daily signal and the daily
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component of the signal for the combined Arkansas-White-Red basin, demonstrating that distinct

sub-monthly signals are recovered by the daily solution.

From here, because monthly and long-term information in the total daily solution is deter-

mined a priori, this analysis focuses only on the estimated daily variations relative to the monthly

solution. All figures and statistics presented in the remainder of this analysis relate to only these

estimated daily variations except where otherwise explicitly stated. These estimates are investi-

gated in greater detail as part of an analysis of multiple basins in North America compared to

model output from NLDAS later in this section.

Figure 5.3: Estimated total daily signal (left) and daily deviations (right) for the combined

Arkansas-White-Red basin. Daily deviations are the total signal with the GSFC monthly fields

removed. A simple 5-day boxcar filter is applied to help show estimated signal structure.

5.1 Quantifying solution bias with the resolution operator

In Section 2.6.2, the resolution operator was defined as a way to transform a truth state to

the regularized form of that state given the chosen estimation regularization scheme. Applying this

concept to the daily mascons, the resolution operator can be used to determine how each mascon

is recovered spatially. The spatial patterns of the resolution operator columns characterize the
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spatial information of the daily estimate. Each column quantifies the distribution of signal leakage

from a single mascon into each of the other 41,168 mascons due to the imposed regularization

constraints as well as the geometry of each day’s orbit observations. Figure 5.4 a) and b) depicts

the spatial dispersion of a true signal over a single mascon in central North America as expressed in

the corresponding column of the resolution operator. This is equivalent to computing to computing

an impulse response x̂ = Rx, where x is an impulse function with value 1 over the single mascon

and zero elsewhere. The impulse response describes the spatial extent of bias in the recovery of

the original impulse. From our chosen regularization, the computed response is most dependent

on relative distances between mascons and proximity to regional boundaries (such as coastlines).

Orbit observations each day then contribute to the total spatial extent of this distribution, scaling

this response function based on each mascon’s proximity to a given day’s GRACE observations.

Mascons closest to the daily orbit show more confined leakage, while greater leakage extent is seen

for more poorly observed mascons.

In GRACE spherical harmonic studies, Gaussian smoothing is commonly used as a post-

processing technique to smooth data and reduce correlated errors due to striping and other effects,

and an Gaussian smoothing radius r for such smoothing is defined as the distance where the
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Figure 5.4: Leakage as represented by the resolution operator: a) Impulse function as a truth

signal over a single mascon, b) recovered truth signal in a geographically dispersed area centered

about that mascon as response to impulse response, c) The recovered signal as a function of distance

to the original signal and a Gaussian smoothing radius best describing this distribution.
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magnitude of the smoothing function has dropped to half of its central value Wahr et al. (1998);

Swenson and Wahr (2006). This radius in then often used to describe the resolution of the smoothed

GRACE solution. By considering the distribution of the recovered mascon signal strength in

Figure 5.4 b) with respect to distance from the central mascon, we can similarly quantify the

spatial distribution of recovered mass due to the resolution operator. Figure 5.4 c) gives these

recovered signal magnitudes with respect to distance from the original central mascon. The plotted

distribution of recovered magnitudes falls off with distance like a Gaussian smoothing function, and

a function fitting this distribution can be determined. From this function, a comparable Gaussian

smoothing radius r for the mascon solution at each mascon is calculated, as depicted in the figure

for the example mascon.

By computing the Gaussian smoothing radius for every land mascon from each specific day’s

resolution operator, we develop a map of mascon spatial resolution for each day. Figure 5.5 shows

daily maps of this resolution for four consecutive days in North America and Antarctica. Orbit

tracks are depicted in red, highlighting areas with better observability. Due to differences in spatial

sampling, higher latitudes show much better spatial resolution and lower dependence on daily

variations in GRACE tracks, while lower latitudes show poorer spatial resolution in general and

significantly poorer resolution in the least observed areas each day. Over North America, tracks of

low visibility can be seen migrating across the continent as the daily orbits shift in coverage each

day, while much lower dependence on orbit track location is seen in Antarctica. Well-observed,

high-latitude mascons such as in Antarctica, Greenland, and Northern Canada show spatial daily

spatial resolutions of 400 km or better, while even the best observed mascons at mid-range latitudes

show significantly lower resolutions of 600-800 km.

In the next section, the resolution operator is applied to comparisons with model outputs of

TWS. These comparisons make use of a mean daily resolution operator computed from 30 individ-

ual daily resolution operators due to computational and storage limitations for this comparison.

This mean resolution operator is presented in Figure 5.6, where a) and b) show an example daily

resolution map for North America and Antarctica and c) and d) show maps of the mean resolution
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Figure 5.5: Daily maps of resolution for June 1-4, 2004 (top to bottom) in North America

and Antarctica. Resolution is defined as the computed Gaussian smoothing radius describing each

mascon’s bias characteristics. Red lines show the GRACE orbit that day.
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Figure 5.6: a) and b): Daily maps of resolution for June 2, 2004 in North America and Antarctica.

Resolution is defined as the computed Gaussian smoothing radius describing each mascon’s bias

characteristics. Red lines show the GRACE orbit that day. c) and d) Maps of mean resolution

from 30 daily estimates for June 2004.
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operator. Computing the mean resolution operator effectively removes the orbital track informa-

tion from the resolution operator, but maintains the primary regularization components in the

operator. Future applications where the individual daily resolution operators are required will re-

quire upgrades to computational and storage capacities available for to solution, but are otherwise

possible.

As a latitude dependence was built into the regularization matrix and is suggested by the

Gaussian smoothing radius resolution maps from the resolution operator, it is informative to con-

sider and attempt to quantify this effect. From the resolution map for the mean resolution operator

in Figure 5.6, each estimated Gaussian radius is plotted with respect to mascon latitude, in Figure

5.7. While there is significant scatter in the signal, a distinct latitude dependence is obvious. This

dependence can be modeled as

r̂(φ) = A+B cosφ, (5.2)

where the model resolution r̂(φ) is the best fit resolution at Latitude φ, A is the best fit resolution

at the poles, and A + B is the best fit resolution at the equator. The best fit polar resolution is

then r̂(φ = ±90◦) = 385 km, and the best fit equatorial resolution is r̂(φ = 0◦) = 836 km.

The resolution map can then be investigated further by removing the best fit of the latitude

dependence from the Gaussian smoothing resolution estimate for each mascon, and mapping the

residual resolution values. Figure 5.8 shows the effect of this operation over North and South

America. When a best fit latitudinal dependence is removed, a clear pattern emerges as a function

of proximity to the coast. Mascons closest to the coast show smaller and therefore better resolution

and inland locations show larger and therefore worse resolution. This can be directly attributed

to the regional constraints built into the regularization matrix, which imposes the condition that

mascons closer to regional boundaries see better resolution due to reductions in leakage across

those boundaries. The figure depicts a “maximum Gaussian smoothing radius” boundary of sorts

inland from the coast. Upon inspection, this maximum occurs at approximately 1000 km from

the coast, which suggests that inland mascons greater than 1000 km from the nearest regional
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Figure 5.7: Mascon resolution as estimated by the Gaussian smoothing radius vs. Latitude.

A clear Latitudinal dependence exists for all latitudes, and can be modeled by a function r̂ =

A+B cosφ. Parameter A then represent the average the best fit resolution at the poles and A+B

represents the best fit resolution at the equator.

boundary are essentially not affected by those constraints, while mascons within 1000 km of the

coast are impacted by those constraints. The maximum (and therefore lowest resolution) mascons

occur right near this boundary, where regional constraints lose their effectiveness but still slightly

impact the bias in those mascons.

It should be stressed that these latitudinal and boundary effects on solution resolution are

expected, but difficult to quantify independently in the regularization scheme itself. By investigat-

ing the spatial patterns observed in the resolution operator, these effects can be better quantified.

It should also be pointed out that regional boundary geometries further complicate the effects of
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Figure 5.8: Maps of Gaussian smoothing derived resolution where latitudinal effects on resolution

from Equation 5.2 have been removed (fit outliers have been masked). Residual signal is dominated

by coastal effects due to the inclusion of regional constraints in the least squares regularization.

regional constraints on solution resolution, as can be seen to a lesser extent in Figure 5.8 along

narrower land masses and areas with irregular boundaries. These can be considered local effects

that further influence mascon resolution.

The developed resolution maps can be related back to the simulation presented in Chapter

4. In the simulation, high-latitude mascons were shown to be nearly fully recoverable within

approximately 600 km of the mascon, while mid-latitude mascons were were only mostly recoverable

within 900 km or more. By comparison, the Gaussian smoothing radius used in this section

quantifies a distance where most but not all signal will be recovered. In fact, the area under a

Gaussian smoothing function from 0 to r is approximately 75% of the total area under the function

for all r in the 300-1200 km range determined here. With this in mind, a simulation recovery radius

of 600 km corresponds with r ≈ 450 km while a recovery radius of 900 km corresponds with r ≈ 675

km, indicating that our simulation findings validate our use of the resolution operator to quantify
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bias in our daily solution. Applying the resolution operator to compute an impulse response

function for each location in the simulation, the recovered simulated signal can be compared to

expected recovery with the resolution operator. Figure 5.9 plots the 900 km radius mass estimates

from Chapter 4 and compares them to an impulse response from applying the resolution operator.

The figure shows recovered impulse responses within the same 900 km radius for two tests: one

where individual daily operators are applied each day, and one where the mean resolution operator

over the month is applied to all days. Recovered impulse from both methods compare well, with

the individual daily operator plots showing slightly more daily variation in signal recovery. Both

estimates match the simulation results well, with both showing slightly better signal recovery for

most locations than the simulation. At high latitude locations, little difference is observed between

Figure 5.9: Recovered signal from the simulation in Chapter 4 at a radius of 900km versus mass

estimates from an impulse response determined from individual daily resolution operators and a

mean resolution operator.
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use of the mean or daily resolution operators, reaffirming the finding that high latitude locations

show only small orbit-based effects on recovered signal resolution. This is due to the assumption

that the resolution operator maps bias assuming perfect observations, while the simulation included

real GRACE observations and therefore imperfect observations.

5.2 Comparisons with Model Estimates of Terrestrial Water Storage

We compare our daily mascons with two models of TWS, VIC 4.0.3 and Noah 2.8, from

Phase 2 of NLDAS(Xia et al., 2012), analyzing daily recovered mass estimates over river basins in

the continental United States for 2012. No TWS model is perfect, and the VIC and Noah models

realize the water cycle with different assumptions and model parameters, leading to differences

in estimates of TWS between the two models. As NLDAS products, these models are realized

in functionally similar forms to the end user, estimating their various model parameters onto the

same grids and at the same temporal resolution. We include comparisons with both models because

it is not obvious which model best represents true TWS, and differences in the two models will

help prevent errors in a single model from overly biasing the results of our comparison. Estimates

of TWS are computed for both models by accumulating NLDAS output fields for multi-layer soil

moisture content, water equivalent snow depth, and total canopy water storage. As neither model

includes groundwater estimates or information for major inland water bodies such as the Great

Lakes, these TWS contributions are not accounted for in the model basin estimates. Both NLDAS

outputs are distributed as hourly 0.125◦ gridded datasets over North America. Each is averaged in

space and time to properly match GRACE resolution.

For each NLDAS output, daily mascon averages of TWS are computed from the hourly

gridded data binned into 1,002 land mascons over North America. At this resolution, these mascon-

averaged outputs are not directly comparable with the daily GRACE product, as they do not share

the same bias characteristics as the GRACE solution. To properly account for this, the mean daily



www.manaraa.com

92

resolution operator is applied to the daily mascon-averaged VIC and Noah fields, transforming the

NLDAS mascon fields into fields that now reflect the same regularization as the GRACE solution,

effectively introducing bias in the GRACE estimate into the NLDAS outputs. This operation

follows Equation 2.74. This transformation from the original NLDAS resolution to mascon space

with bias is illustrated in Figure 5.10 and summarized in Table 5.1. The top row illustrates the

effects on spatial resolution of these operations, while the bottom plots show the effects on the

recovered mass estimates for two example basins. As basin size decreases, the total recovered

signal increasingly differs from the true signal due to leakage both in and out of the basin.

Figure 5.10: Top: Example daily NLDAS-Noah maps of TWS with monthly mean removed:

native 0.125◦ gridded resolution (left), mascon-averaged space (center), and mascon space with

mean resolution operator applied (right). Bottom: True basin mass compared to basin mass

with resolution operator applied in two basins, Missouri (1,313,551 km2) and Arkansas-White-Red

(644,132 km2).
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Table 5.1: Overview of NLDAS model output processing

Data Dimensions Size Processing applied

1 Hourly 0.125◦ grids [time × φ × λ] [8784, 224, 464] Compute daily mean fields
2 Daily 0.125◦ grids [time × φ × λ] [366, 224, 464] Mascon-average grids
3 Daily mascons [time × N mascons] [366, 1002] Filter days without GRACE
4 Daily mascons [time × N mascons] [269, 1002] Apply mean res. operator
5 Daily mascons w/ R [time × N mascons] [269, 1002]

NLDAS-derived estimates of TWS with the resolution operator applied are compared with

the developed daily solution for the 269 days with useful GRACE observation data in 2012 over 15

hydrologic basins in North America, as defined by the U.S. Geological Survey’s (USGS) Hydrologic

Unit Maps (Seaber et al., 1987). These basins are shown in Figure 5.11. As NLDAS does not include

any information for inland seas and lakes, the Great Lakes/St. Lawrence basin was not included

in this comparison. In addition, certain basins near the top and bottom of the NLDAS coverage

area where we do not have information about bias from signal beyond the coverage area were also

excluded. Figure 5.12 compares the daily mascon estimates for 12 of these basins with the VIC

and Noah outputs. Basins are ordered from largest to smallest, the majority of basins show good

agreement between the models and GRACE, with this agreement breaking down significantly in the

smallest basins. In addition, example maps for six consecutive days in June 2012 are compared for

GRACE and both models in Figures 5.13 and 5.14, showing comparable signals spatially during this

period. The figures also illustrate spatial limits resulting from solution regularization, comparing

to both NLDAS models with and without the resolution operator applied.
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Figure 5.11: North American hydrologic basin boundaries from the USGS Hydrologic Unit

Maps. Source: https://water.usgs.gov/wsc/map index.html.

Bias in the GRACE solution is approximated by quantifying bias in the NLDAS basin esti-

mates. NLDAS-derived basin bias is approximated by computing the bias for each mascon in the

global set of mascon-averaged NLDAS cells x(t) using Equation 2.77,

l(t) = (I −R)x(t) (5.3)

and accumulating total bias for each basin i at every time from the subset l̃i(t) = [l1, l2, ..., lN ] of

N mascons in basin i as in Equation 5.1 by

Li

(
l̃i(t)

)
=

∑N
j=1 aj lj(t)∑N

j=1 aj
. (5.4)

By computing the standard deviation σLi of each basin bias estimate, a measure of the bias for

each basin is determined. We then relate the ratio of the standard deviation σBi of the basin signal

Bi (from Equation 5.1) to σLi as

r̂i =
σBi

σLi

, (5.5)

where r̂i is then a measure of signal-to-noise and r̂i > 1 implies meaningful signal. We also

compute correlations between GRACE and NLDAS to observe how well the models agree with
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Figure 5.12: Comparison of daily estimates from GRACE with NLDAS model outputs for 12

basins in North America, with monthly means removed. GRACE daily estimates are dots in red,

with a 5-day boxcar filter applied as red line. NLDAS-VIC is in blue and NLDAS-Noah is in yellow,

each with the resolution operator applied. Gaps are days without GRACE observations.
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Figure 5.13: Maps for six consecutive days in June 2012 from GRACE and NLDAS-Noah. The

center column depicts NLDAS with the mean resolution operator applied and the right column

depicts NLDAS at mascon-averaged resolution
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Figure 5.14: Maps for six consecutive days in June 2012 from GRACE and NLDAS-VIC. The

center column depicts NLDAS with the mean resolution operator applied and the right column

depicts NLDAS at mascon-averaged resolution.
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GRACE estimates. These various parameters are computed for the daily deviations from monthly

mean fields for 2012 for both NLDAS-Noah and NLDAS-VIC and summarized in Table 5.2.

GRACE daily solutions show the improved signal recoverability as basins increase in size

and in latitude, meeting expectations. The standard deviation of recovered basin signals from

GRACE, σi,GRACE , can be used as a proxy for the amount of signal recovered by the daily solution

and shows a strong correlation with basin size. Signal-to-noise as determined by r̂i likewise shows

positive correlations basin size, though basin shape is also important. A latitude dependence in

total bias is also measurable between basins of comparable sizes, with more northern basins such

as the Upper Mississippi and Ohio basins showing better signal-to-noise than comparable basins

in the Texas Gulf and Lower Colorado, respectively, for both models. Bias becomes increasingly

dominant as basin size decreases. Wider basins, such as the Arkansas-White-Red and Ohio show

better signal content than narrower basins of comparable size, such as the South Atlantic-Gulf

and Lower Colorado. In general, basins 800,000 km2 and larger show meaningful estimated signal,

basins 300,000-800,000 km2 show signal and bias to be of approximately the same size, and basins

smaller than 300,000 km2 show bias dominating signal. Similarly, correlations between GRACE and

both versions of NLDAS decrease with basin size, with basins smaller than 250,000 km2 showing

reduced correlations, likely due to the limited observability of GRACE at daily timescales. For

example, the Tennessee basin shows bias significantly overwhelming signal by every metric. This

basin is approximately the size of the smallest observable basins with monthly GRACE data, and

therefore it is not surprising that it is unobservable on daily timescales.

Finally, it is useful to consider these basins with the monthly mean fields from the GSFC

solution restored. Figure 5.15 shows the same 12 basins as before, and the combined daily +

monthly estimates now reflects the total mass change estimates for each basin for 2012. A few

takeaways stand out in these plots. First, as suggested by the presented metrics for signal recovery

and bias effects, basin estimates for the largest basins appear most realistic, with smaller basins

increasingly dominated by bias. An important takeaway is that it is impossible to determine if these

bias effects are due to signal from outside the basin leaking into the basin, or from signal inside the
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Figure 5.15: Daily basin estimates from GRACE with monthly reference restore. GRACE daily

estimates are dots in red, with a 5-day boxcar filter applied as red line. The GSFC monthly solution

is in blue, and data gaps are days without GRACE observations.
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basin leaking outward. Second, as these basins are at mid-Latitudes where observability is greatly

impacted by orbit proximity each day, these signals make it clear that any applications of TWS

estimates from these daily solutions will need to adequately account for daily observability. This

could take the form of using the estimation covariance matrix or the resolution operator, which

both present measures of observability. For example, using either the resolution maps derived from

the resolution operator or using the full resolution operator itself if enough computational resources

are available, these daily solutions can be used for a variety of applications where better observed

locations each day are trusted more while less well observed locations are trusted less. Considering

data assimilation applications, the resolution operator can inform the assimilative system of the

accuracy of surface mass estimates for each location each day, and impose observation weighting

based on this information that determines how heavily each daily mascon estimate is considered.

Finally, inspection of the full daily signal as it transitions from one month to another for months

with large changes often results in a “jump” in the data. This jump reflects the relative differences

in resolution between the monthly and daily solutions, where the monthly GSFC product is less

influenced by spatial bias due to significantly better observational coverage, and therefore by default

will capture more localized signals better.
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5.3 Solution errors

Errors in the full daily solution are in 3 parts: errors carried forward from the monthly

solution as described in Luthcke et al. (2013) and Loomis et al. (2019, under review), formal errors

from the least squares fit, and bias caused by leakage as discussed above. These three components

can be combined to form the total error in the solution. As the error in the monthly solution is

not part of this dissertation, it will not be discussed in depth here.

As discussed in Loomis et al. (2019, under review), producing calibrated formal errors for

the mascon solution becomes challenging. Uncalibrated errors from the least squares solution are

available, but properly scaling these errors to reflect the real error in the estimate would require well

known in situ information, and the errors of that data would have to be equally well known. Instead,

similar to the method chosen for assessing the formal errors in the monthly solution (described in

Loomis et al. (2019, under review)), a temporal filter is applied to the estimated solution and the

difference between the filtered and unfiltered solution at each mascon is then used to approximate

the error. This may over- or under-estimate the true error depending on the strength of the filter

chosen. Any temporal filter will transform the individual daily estimates into temporally correlated

estimates, but it can be assumed that days close to one another should behave similarly enough

that such a filter will primarily damped noise in the estimate. For this analysis, a relatively simple

7-day boxcar smoother is applied to the daily estimate at each mascon. Figure 5.16 shows the mean

of the computed noise uncertainties in the solution for 2012. A 7-day filter was chosen because

the GRACE ground track passes within a few hundred kilometers of each mascon every 7 days or

fewer. A longer filter would break down assumptions about signal versus noise that are damped

in the filtered solution, while a shorter 5-day filter showed only minor differences. Therefore the

7-day filter is a relatively conservative approximation of the noise.

While formal error uncertainties are considered for each mascon, bias errors can be considered

at either the mascon or basin level. In Equation 5.3, a relationship was developed to determine the

leakage in the estimated solution from the truth x. In reality, this truth is not known. Instead, the
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Figure 5.16: Map of the mean noise uncertainties in the daily estimate.

best estimate can be used to approximate the leakage following

l̂(t) = (I −R)x̂(t). (5.6)

As this approximation is determined from each day’s best estimate, a more representative approx-

imation of the bias can be determined for all days over a full month (which all shared the same

background reference month from the GSFC solution) by computing the RMS of the leakage for

each mascon over that month. Because this estimate of the bias is dependent on the biased daily

best estimate, this estimate likely does not capture the full extent of the bias. Model output from

the Global Land Data Assimilation System (GLDAS) could be substituted for x̂ and used similarly

to comparisons with NLDAS in Section 5.2, but then the bias would be model-dependent. Figure

5.17 (top) shows the 2-σ bias map for July 2012 from this approximation using the mean resolu-

tion operator. However, it is often more appropriate to consider bias at a basin level, as leakage

between mascons within a basin does not bias the total estimate of the basin itself. Applying the

basin masks distributed with the monthly GSFC solution, the bias for each basin is shown in Fig-

ure 5.17 (bottom). The two figures show that while leakage causes substantial bias at the mascon



www.manaraa.com

104

level globally, the geometry and location of a basin may be such that basin level bias is significantly

smaller. For example, larger basins such as the Mississippi Basin and isolated basins in the designed

regularization such as Greenland show significantly smaller leakage than at the mascon scale.

Figure 5.17: Maps of the bias uncertainties in the daily estimate for days in July 2012 using the

mean resolution operator at mascon (top) and basin (bottom) scales.
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5.4 Analysis of Polar Basins

While this dissertation focuses on hydrology applications and therefore the majority of this

analysis has been over low- and mid-latitude basins, GRACE daily solutions show good promise for

high-latitude applications as well, including in surface mass balance studies. Basin mass estimates

for Greenland, Northern Canada, and Antarctica are shown in Figure 5.18. These estimates suggest

that this daily solution can recovered sub-monthly hydrologic cycles with periods on the order of

10 days. Additionally, Greenland mass recovery is dominated by trends in ice melt, with secondary

effects likely due to precipitation. The total signals in these regions (daily + monthly) is helpful

to consider because it adds context to the recovered trends in the month. These signals are shown

in Figure 5.19. The figure suggest that taken as a whole, Greenland ice melt is wholly captured in

the recovered signal, as month-to-month jumps between the total daily signal due to bias effects

are not seen for the region. This is different than what was observed in the NLDAS analysis of

hydrologic basins, and likely due to both better observability in polar regions with GRACE and

regional constraints that isolate Greenland from the rest of North America. As with the previous

plot, the figure suggests a recovery of sub-monthly periodic surface mass changes in Antarctica.

However, the figure now shows that these changes and the scatter in the individual daily solutions

are of the same magnitude as the inter-monthly mass changes in Antarctica, suggesting that these

recovered signals might be dominated by systematic bias or mis-modeling rather than completely

realistic signals. This is an interesting finding, and could suggest that these daily signals may be

recovering corrections to mis-modeled atmospheric mass fluctuations in Antarctica that are not

well characterized in the atmospheric de-aliasing product. Further investigation of these signals

is outside the immediate scope of this dissertation, but would be a natural extension of this work

in the future. Statements about the accuracy of recovered signals in the Northwest Territories of

Canada are less certain, but the figures suggest the recovery of some type of sub-monthly periodic

mass fluctuation. Further investigation taking into account TWS and atmospheric effects from

other datasets are needed to make any additional statements in this region.
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Figure 5.18: Daily-recovered signal in three polar regions: Greenland (top), Antarctica (middle),

& Northwest Territories and the Canadian Archipelago.
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Figure 5.19: Daily-recovered signal with monthly fields restored in three polar regions: Greenland

(top), Antarctica (middle), & Northwest Territories and the Canadian Archipelago.
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Figure 5.20 shows polar maps of recovered daily signals for 10 consecutive days in June

2012. These maps suggest realistic recovery of hydrologic and cryospheric signals over Greenland,

Northern Canada, and Russia, where maps of resolution as defined by the Gaussian smoothing

radius and the columns of the resolution operator suggest signal resolution of approximately 400-

450 km. Additionally, daily mass variations in coast Antarctica suggest meaningful surface mass

recovery, while signals over interior Antarctica are less coherent, potentially reflecting atmospheric

mismodeling.

For the presented regions and polar regions as a whole, it is likely that total basin mass

estimates are influenced by the GRACE daily orbit paths, which may explain some of the periodicity

in the recovered estimates. However, Figure 5.17 suggests that bias due to leakage is not a significant

error source. Though GRACE has much better coverage at higher latitudes, daily solutions are still

limited by the relatively space observations available from just 15 daily orbits, and best estimates

of the resolution in these regions are still poorer than for most global locations monthly. Therefore,

as in hydrology applications, rigorous use of this estimate for data assimilation or comparisons will

require use of the full solution covariance or alternatively the resolution operator to most accurately

interpret the mascon-by-mascon recovered signals.
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Figure 5.20: Maps for ten consecutive days in June 2012 from GRACE above 60◦N and over

Antarctica.
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Chapter 6

Conclusions

In this dissertation, a daily GRACE estimate of TWS is designed and an analysis of the

resulting solution is presented. This solution is designed as a global mascon product over land,

using the same mascon definitions as the GSFC Global Mascon Solution. The daily solution is

designed as an extra information layer on top of the GSFC monthly product, and the two thus

form a hierarchical solution capturing high spatial information at monthly timescales and additional

lower spatial information at daily timescales.

6.1 Summary of findings

Chapter 3 details the specific mascon representation used in this study and design of the

least squares solution. In this chapter, the design of the estimation regularization scheme is de-

tailed and design decisions are justified. Applying correlations between nearby mascons, regional

boundary constraints, and latitude-dependent weighting, a global scaling factor was determined

which provided for a minimally regularized solution. This minimal regularization was defined as

the smallest weighting that fit the design criteria that a resulting solution should not show large

correlated errors, manifested as vertical striping in each daily estimate. It was shown that certain

small, isolated land basins are simply not observable on daily timescales. Alternative regularization

strategies attempting to inform recovered signal location using various model-driven spatial distri-
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butions or orbit track swaths were discussed, and the reasons for not implementing these concepts

were argued.

Chapters 4 presented an analysis of a simulation utilizing the designed estimation system.

This simulation showed that signal recovery has a large latitudinal dependence, with signal leakage

in polar areas such as Greenland, Antarctica, or Finland being largely confined within approxi-

mately 600 km of the true signal, while mid-latitude areas showed leakage on the order of 1000 km,

with many locations not fully recovering the original signal at even these distances. The simulation

also showed the effectiveness of the regional constraints in the solution regularization matrix, which

helped properly isolate signals in more confined land masses such as South America and showed

that these lower-latitude regions could recover similar signal as better-observed mid-latitude ar-

eas not influenced by regional constraints. This simulation study provided expectations on signal

recoverability in the actual daily solution.

A rigorous analysis of the actual recovered daily signal was then presented in Chapter 5.

Building on the results of the simulation, a methodology was presented for determining the resolu-

tion of each estimated mascon, in terms of a Gaussian smoothing function like that used to describe

GRACE spherical harmonic solution resolution. Resulting maps of this mascon-dependent resolu-

tion agreed with findings from the simulation study, justifying its use as a measure of bias in the

solution and the resulting resolution of the solution. Whereas GRACE monthly solutions show

signal resolutions on the order of 300 km, the developed daily solutions have latitudinally depen-

dent resolutions ranging from approximately 450 km at high latitudes to 800+ km resolution at the

equator, and these resolutions are further dependent on the geometries and proximities of regional

boundaries in the solution.

A basin analysis was then conducted in comparison with two models from NLDAS, and a

comparison methodology was established that ensured comparable signal resolutions between the

GRACE estimates and the models. This analysis showed that basins 800,000 km2 and larger exhibit

high signal recovery compared to bias, while basins between 300,000 km2 and 800,000 km2 showed

marginal signal recovery compared to bias, and the latitudes of these basins largely determined if
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the basins were observable. In basins smaller than 250,000 km2, bias resulting from leakage into

and out of the basins dominated signal recoverability.

As high latitude locations were demonstrated to be particularly observable in the daily es-

timates, basins in Greenland, Northern Canada, and Antarctica were investigated. Without good

estimates of surface mass variability on daily timescales to compare with, conclusions from these

investigates must be somewhat muted, but the investigations showed that meaningful signals are

recovered. Significant sub-monthly signal structure is recovered in all three regions, likely driven

by sub-monthly precipitation- and melt-driven mass changes, though maps of interior Antarctica

suggest factors such as atmospheric mis-modeling might also be drivers in the recovered mass

estimates.

The resulting daily solutions capture daily surface mass variations from residual observation

information aliased into the monthly GRACE solutions. These estimated variations are of signif-

icantly diminished spatial resolution as compared to the monthly solutions, but show promising

signal recovery.

6.2 Applications and Future Outlook

The developed daily solution shows great promise as a low-resolution estimate of daily TWS

variability, complimentary to high spatial resolution monthly and long-term information in the

GSFC monthly mascon solution. Daily TWS estimates have immediate uses in applications us-

ing GRACE data to capture changes in the total water content of an area, either standalone as

with basin estimates of TWS or in conjunction with measurements of soil moisture, canopy water

storage, or surface water content to separate various components of TWS. Historical analyses of

daily variability can provide insights into propagations of any number of TWS signals. A more

immediate application, however, is to use these daily estimates as temporal constraints coupled

with monthly estimates as spatial constraints to inform historical data assimilation systems and



www.manaraa.com

113

data-driven models. The new information provided by daily mascon estimates and their associated

daily errors allow assimilation efforts to use GRACE data at multiple spatiotemporal resolutions,

addressing some of the challenges highlighted by Livneh and Lettenmaier (2012) and Girotto et al.

(2017). Further improvements in applying GRACE to data assimilation efforts would likely require

the direct inclusion of GRACE Level-1B ranging observations, which only a few centers are cur-

rently equipped to process due to the many components that must be considered when using this

data. Higher resolution at polar locations suggests these solutions can likewise be used for better

parameterization of surface mass balance models, allowing GRACE information to inform these

models at better temporal scales while maintaining spatial resolutions close to those in monthly

estimates. Resolution information from the resolution operator or the variance-covariance matrix

can be used to correctly assimilate the daily information.

These daily solutions have obvious uses in any applications requiring high temporal sampling,

but near real time applications requiring up-to-date daily information pose a significant hurdle. In

the developed solution, the fully converged monthly estimate is used as a background forward

model, allowing this daily estimate to determine only deviations from that monthly state, rather

than the full gravity field. For this solution to be developed as a near real time product, significant

investments will be needed, either in time or computational capacity or both. First, lag time

associated with the processing of GRACE Level-1A raw observation data into estimation-ready

Level-1B ranging data must be reduced. This first round of processing is not instant, and historically

has required 2 or more weeks between data collection and processing completion. Assuming this

time is reduced, the second obstacle is to rapidly turn around a high resolution monthly estimate

for inclusion in the reference forward model. This could take many forms. For instance, every few

days a new 30-day solution could be computed from the most recent 30 days of available data,

and then this estimate could be used as the reference for near real time daily grid estimation.

Alternatively, the most recent converged monthly solution could be extended into the future, either

by attempting to project signal evolution based on some historical model or by simply maintaining

that most recent field as the reference model state. In any case, overcoming these obstacles is a
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logistical problem more than a research problem, and once overcome the daily solution developed

in this dissertation could be applied to such a system.

This dissertation focused on recovering daily signals over land, assuming the background

ocean de-aliasing product captured enough of the daily variability over the oceans to be able to

heavily constrain ocean mascons. Due to the low spatial resolution of the developed daily estimates

and smaller signal magnitudes over the oceans to begin with, this assumption is not likely to

bias any recovered TWS signals. However, there are likely use cases where attempting to resolve

daily ocean variability would be helpful, such as for improvements to ocean models, including the

de-aliasing product used in the background model. In particular, such solutions could positively

impact models of ocean bottom pressure on sub-monthly scales. If there is a demand for such a

product, the findings in this dissertation can be used to help inform a proper regularization for

recovering ocean mass variability.

This dissertation focused on daily time-variable gravity estimation from GRACE observations

alone. These estimates are greatly effected by daily observability issues due to each daily orbit. If

improvements to daily spatial resolution are desired, one possible option is to include additional

data types in the least squares inversion along with the Level-1B K-band ranging observations.

Possible data types to include are satellite laser ranging (SLR) measurements from other geodetic

satellites, laser altimetry measurements of ice sheet elevation, GPS ground station measurements

of vertical land motion, and radar altimetry measurements of sea surface height anomalies. SLR

measurements are the most directly applicable, as these provide comparable observables of time-

variable gravity to GRACE. Ice and ocean altimetry provide separate components of time variable

gravity each coupled with other signals, and therefore the application of these in gravity field

estimation requires additional assumptions and models related to surface mass balance and ocean

temperature. GPS measurements require processing and an understanding of the various surface

loading effects at each ground station, but can be related to surface mass variations. The inclusion

of these data types can improve the resolvability of both long-wavelength variations (SLR) and

localized signals (GPS, altimetry).
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6.3 Concluding Remarks

This dissertation has developed a new type of daily GRACE solution, resolving TWS on daily

timescales given daily information and establishing expected performance metrics for signal reso-

lution in these solutions. These daily estimates are applicable in hydrology applications in basins

and regionally, and show strong potential in cryospheric regions where daily GRACE observations

are most available. Lower spatial resolution information from the developed solution, used in con-

junction with high spatial resolution monthly solutions, can in turn be used to best characterize

time-variability across multiple spatiotemporal scales.
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Appendix A

Mascon Visualization Tool

In conjunction with this thesis, an extensive set of skills were developed working with not

only the GSFC mascon solution but also the JPL mascon solution. These solutions differ in many

ways, from the background models used to determine the least squares reference state, to the

processing assumptions, to the realization of the gravity as a set of mascons itself. This last

difference makes comparisons between the two solutions somewhat challenging, and even makes

moving from one solution to the other less than straightforward. During the development of this

thesis, a collaborative opportunity presented itself with a simple yet nonetheless challenging goal:

develop a platform where GRACE mascon products can be analyzed according to their own unique

requirements in a straightforward manner where it is difficult to use the data incorrectly.

To achieve this goal, an extensive amount of work was put into building the Mascon Visu-

alization Tool (MVT), a Javascript-based web platform where users can analyze local, basin, and

regional signals of interest from both the GSFC and JPL mascon solutions with just a few mouse

clicks. As part of this platform, users are able to download data and plots from their analyses for

use elsewhere in their own research. As a result, this platform has created what might be considered

a brand new “Level 4” GRACE product type aimed at non-experts and experts alike and not even

requiring the user download gridded data products that are made available as user-friendly “Level

3” data types. The site continues to be updated, with support from Bryant Loomis at GSFC and

David Wiese at JPL, the primary points of contact for each center’s mascon solution, and through

the ongoing support of Steve Nerem and CCAR. The MVT was publicly introduced at the GRACE
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Science Team Meeting in Austin, TX in 2017, but has been in use since mid-2016 (Croteau and

Nerem, 2016).

The MVT began as a simple tool to look at local signals in the JPL mascon solution. A user

could click a location on a map and a plot of the time series at that location would be presented.

Over time, this platform grew and expanded, and today users can investigate trends and annual

signals, compute local, basin, and continental mass change, and select subsets of the GRACE time

series for more specific investigations. Figure A.1 depicts the tool interface, with a time series of

a single mascon in Colorado plotted and a trend map for the JPL RL06 mascon solution for the

entire GRACE mission depicted in the background.

Figure A.1: Mascon Visualization Tool interface, showing TWS for a single mascon in Colorado

with a trend map over the entire GRACE timeframe in the background from the JPL RL06 mascon

solution.

The MVT has seen considerable user growth since its public introduction. While hundreds

of researchers were already using the tool prior to that official launch, the site as seen considerable
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growth in the year since. Through November 15, 2018, over 1,800 individual users were tracked for

the site, from 48 states and 91 countries.

Technologies used in building this site include but are not limited to:

• Mapbox GL JS Javascript mapping library

• D3.js Javascript visualization library

• Custom mascon and plotting Javascript code

• Matlab and Python 3.6

As of the publication of this dissertation, the MVT is available at: http://ccar.colorado.edu/grace/.

Complete documentation for the tool and data products used is available on the site.



www.manaraa.com

Appendix B

Fast vectorized spherical harmonic computations in MATLAB

As part of work building to this thesis, extensive use of GRACE Level 2 spherical harmonic

solutions and other spherical harmonic datasets required the heavy optimization of inherited Matlab

code for computations in Equations 2.41 and 2.48. The code takes advantage of extensive pre-

computations and Matlab’s vector math operations to see a more than 20× increase over naive

implementations and 2× speed performance over other optimized versions of the original software.

Extra features of the code have been simplified and is presented here for archival and reference

purposes.

function [lons,lats,weq_grid,N_grid] = calc_Earth_gravity(C,S,Nmax,block_size)

% CALC_EARTH_GRAVITY_GRIDS_FASTER calculates various Earth gravity grids

% for a set of spherical harmonic coefficients. This is a speed-optimized

% version of ’calc_Earth_gravity_grids.m’ from Bryant Loomis and others.

%-

% block_size = 0.5;

% [lons,lats,weq_grid,N_grid] = calc_Earth_gravity(C,S,Nmax,block_size);

%-

% INPUTS:

% Variable Description

% -------------- ---------------

% C Cosine harmonic coeffs, size: [Nmax+1, Nmax+1]

% S Sine harmonic coeffs, size: [Nmax+1, Nmax+1]

% Nmax Max degree/order of spherical harmonic expansion

% block_size Size (deg) of equal-angle grids for grid

%

% OUTPUTS:

% Variable Description Units

% -------------- --------------- ---------

% lambda Longitude array [deg]

% phi Latitude array [deg]
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% weq_grid Water equivalent height grid [cm H2O]

% N_grid Geoid height grid [m]

%

% -------------------------------------------------------------------------

% Based on ’calc_Earth_gravity_grid.m’ by B. Loomis, M. Croteau, T. Rebold.

% Author: Michael Croteau

% Load Love Numbers

load(’love_hkl_N719.mat’)

h = love.data(:,2);

k = love.data(:,3);

% Truncate expansion if degree exceeds degree of love numbers:

NLove = length(k)-1;

if Nmax > NLove

fprintf(’Cannot plot higher than Nmax=%i. ’, NLove);

fprintf(’Expansion will be truncated.\n\n’);

Nmax = NLove;

end

% Truncate love numbers if expansion is smaller than love numbers:

if NLove > Nmax

if (calc_sum_vdisp > 0)

h = h(1:(Nmax+1));

end

k = k(1:(Nmax+1));

end

% Precompute n-indexed scale factors:

if (calc_sum_deltaG > 0)

nsf_2nplus1_over_1plusk = (2*(0:Nmax)’+1) ./ (1+k); % [Nmax+1, 1]

end

% Load constants from function at bottom:

rho_water = 1000; % [kg/m^3] Density of Water

rho_Earth = 5517; % [kg/m^3] Dens of Earth

rE = 6378136.3; % [m] Radius of Earth

muE = 398600.4415e9; % [m^3/s^2] Earth Gravitational Parameter

m2cm = 100; % 1 [m] = 100 [cm]

CONST = (rE*rho_Earth)/(3*rho_water); % Constant for water equiv height

% Define latitudes (phi) and longitudes (lambda)

bso2 = block_size/2;

phi = ((-90+bso2):block_size:(90-bso2)) * pi/180;

lambda = ((-180+bso2):block_size:(180-bso2)) * pi/180;

l_lam = length(lambda);

l_phi = length(phi);
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% Precompute ’cos m lambda’, ’sin m lambda’, and ’sin phi’ terms:

ems = (0:Nmax)’;

cos_m_lambda = cos(ems*lambda); % [Nmax+1, l_lam]

sin_m_lambda = sin(ems*lambda); % [Nmax+1, l_lam]

sin_phi = sin(phi); % [1, l_phi]

% Calculate base grids from C and S

sum_N = zeros(l_phi,l_lam); end

sum_deltaG = zeros(l_phi,l_lam); end

for n=2:Nmax % Loop through n,m to calculate grids:

in = n+1;

Pnm = legendre(n,sin_phi,’sch’);

renorm = sqrt(2*n+1);

renormed_Pnm = zeros(l_phi,Nmax+1);

renormed_Pnm(:,1:in) = renorm * Pnm’;

sum_Ynm = zeros(l_phi,l_lam);

for m=0:n

im = m+1;

sum_Ynm = sum_Ynm + renormed_Pnm(:,im) * ...

(C(in,im)*cos_m_lambda(im,:) + S(in,im)*sin_m_lambda(im,:));

end

sum_N = sum_N + sum_Ynm;

sum_deltaG = sum_deltaG + nsf_2nplus1_over_1plusk(in) * sum_Ynm;

end

% Calculate grids to output based on what was called in ’output_grids’:

lats = phi * 180/pi;

lons = lambda * 180/pi;

weq_grid = CONST * sum_deltaG * m2cm;

N_grid = rE * sum_N;

end % END OF MAIN FUNCTION
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Appendix C

Executive Summary

Traditional GRACE solutions provide monthly high spatial resolution time-variable gravity

estimates. These estimates are useful in applications spanning hydrology, cryosphere, oceans, and

more, but their monthly realizations lead to problems using GRACE data when sub-monthly infor-

mation is needed. The GRACE orbit design results in approximately 15 evenly spaced daily orbits,

and the daily orbit coverage propagates longitudinally each day. Most GRACE solutions compile

these observations in monthly increments, resulting in a high density of time-variable gravity field

observations for informing the monthly solution, but this results in daily variations over the span of

each month being aliased in the resulting gravity field estimate. For applications such as drought

monitoring, flood prediction, data assimilation, and GRACE-informed mass balance models, better

temporal coverage would allow GRACE to better inform these efforts.

This dissertation presents an analysis of a new, unique daily GRACE estimate of terres-

trial water storage. Resolution of the new solution is quantified and basin estimates of TWS are

compared with models. Validated by simulation results, the new daily solution is shown to recover

estimates of water storage with approximately 400 km resolution at the poles and 800 km resolution

at the equator. This distinct latitudinal dependence on signal resolution results from the GRACE

orbit geometry, which provides better coverage at higher latitudes. The newly developed daily

solution is shown to successfully capture meaningful water storage signals on daily timescales with

quantified leakage errors. These findings and errors hold promise in addressing the many needs for

better temporal information from GRACE.
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